Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Langmuir ; 40(31): 16530-16537, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39046847

RESUMEN

Lipid membranes that are separated from the surface of graphene by DNA tethers were prepared by surface functionalization with pyrene coupled to single-stranded DNA (ssDNA), followed by self-assembly of the mixture of ssDNA-functionalized phospholipid and the matrix phospholipids. The formation of uniform membranes was confirmed by fluorescence microscopy, and the structures of the systems before and after hybridization in the direction perpendicular to the global plane of the membranes were investigated using high-energy X-ray reflectivity. The thickness values of the DNA spacers (15 and 37 bp) calculated from the best-fit results were less than the expected thicknesses of the double-stranded DNA (dsDNA) chains taking the upright conformation, indicating that the DNA spacers are tilted with respect to the direction normal to the surface. The Young's moduli of the DNA-tethered membranes obtained by AFM nanoindentation showed higher values than the membranes with no DNA tethers, which suggests that the DNA layer resists against the compression, lifting up the membrane. Intriguingly, the presence of DNA tethers caused no increase in the yield depth. The smaller thickness values as well as the unchanged yield depth suggest that the dsDNA chains can tilt and rotate, which can be attributed to the flexible pyrene-DNA junction.


Asunto(s)
Grafito , Grafito/química , ADN de Cadena Simple/química , Propiedades de Superficie , Pirenos/química , ADN/química , Microscopía de Fuerza Atómica , Membranas Artificiales
2.
ACS Appl Bio Mater ; 7(1): 246-255, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37967519

RESUMEN

Antibacterial materials composed of biodegradable and biocompatible constituents that are produced via eco-friendly synthetic strategies will become an attractive alternative to antibiotics to combat antibiotic-resistant bacteria. In this study, we demonstrated the antibacterial properties of nanosheet-shaped crystalline assemblies of enzymatically synthesized aminated cellulose oligomers (namely, surface-aminated synthetic nanocelluloses) and their synergy with a metal-chelating antibacterial agent, ethylenediaminetetraacetic acid (EDTA). Growth curves and colony counting assays revealed that the surface-aminated cellulose assemblies had an antibacterial effect against Gram-negative Escherichia coli (E. coli). The cationic assemblies appeared to destabilize the cell wall of E. coli through electrostatic interactions with anionic lipopolysaccharide (LPS) molecules on the outer membrane. The antibacterial properties were significantly enhanced by the concurrent use of EDTA, which potentially removed metal ions from LPS molecules, resulting in synergistic bactericidal effects. No antibacterial activity of the surface-aminated cellulose assemblies was observed against Gram-positive Staphylococcus aureus even in the presence of EDTA, further supporting the contribution of electrostatic interactions between the cationic assemblies and anionic LPS to the activity against Gram-negative bacteria. Analysis using quartz crystal microbalance with dissipation monitoring revealed the attractive interaction of the surface-aminated cellulose assembly with LPS Ra monolayers artificially produced on the device substrate.


Asunto(s)
Escherichia coli , Lipopolisacáridos , Ácido Edético/farmacología , Lipopolisacáridos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Quelantes/farmacología , Metales , Cationes , Celulosa/farmacología
3.
Nat Commun ; 15(1): 5824, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38992009

RESUMEN

Access to clean water, hygiene, and sanitation is becoming an increasingly pressing global demand, particularly owing to rapid population growth and urbanization. Phytoremediation utilizes a highly conserved phytochelatin in plants, which captures hazardous heavy metal ions from aquatic environments and sequesters them in vacuoles. Herein, we report the design of phytochelatin-inspired copolymers containing carboxylate and thiolate moieties. Titration calorimetry results indicate that the coexistence of both moieties is essential for the excellent Cd2+ ion-capturing capacity of the copolymers. The obtained dissociation constant, KD ~ 1 nM for Cd2+ ion, is four-to-five orders of magnitude higher than that for peptides mimicking the sequence of endogenous phytochelatin. Furthermore, infrared and nuclear magnetic resonance spectroscopy results unravel the mechanism underlying complex formation at the molecular level. The grafting of 0.1 g bio-inspired copolymers onto silica microparticles and cellulose membranes helps concentrate the copolymer-coated microparticles in ≈3 mL volume to remove Cd2+ ions from 0.3 L of water within 1 h to the drinking water level (<0.03 µM). The obtained results suggest that hyperconfinement of bio-inspired polymers in flow-through systems can be applied for the highly selective removal of harmful contaminants from the environmental water.


Asunto(s)
Metales Pesados , Polímeros , Purificación del Agua , Polímeros/química , Purificación del Agua/métodos , Metales Pesados/química , Metales Pesados/aislamiento & purificación , Biodegradación Ambiental , Contaminantes Químicos del Agua/química , Cadmio/química , Fitoquelatinas/metabolismo , Fitoquelatinas/química , Celulosa/química , Dióxido de Silicio/química , Iones/química
4.
Langmuir ; 29(1): 328-36, 2013 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-23199228

RESUMEN

The Fer-CIP4 homology-BAR (F-BAR) domain, which was identified as a biological membrane-deforming module, has been reported to transform lipid bilayer membranes into tubules. However, details of the tubulation process, the mechanism, and the properties of the generated tubules remain unknown. Here, we successfully monitored the entire process of tubulation and the behavior of elongated tubules caused by four different F-BAR domain family proteins (FBP17, CIP4, PSTPIP1, and Pacsin2) using direct real-time imaging of giant unilamellar liposomes with dark-field optical microscopy. FBP17 and CIP4 develop many protrusions simultaneously over the entire surface of individual liposomes, whereas PSTPIP1 and Pacsin2 develop only a few protrusions from a narrow restricted part of the surface of individual liposomes. Tubules formed by FBP17 or CIP4 have higher bending rigidities than those formed by PSTPIP1 or Pacsin2. The results provide striking evidence that these four F-BAR domain family proteins should be classified into two groups: one group of FBP17 and CIP4 and another group of PSTPIP1 and Pacsin2. This classification is consistent with the phylogenetic proximity among these proteins and suggests that the nature of the respective tubulation is associated with biological function. These findings aid in the quantitative assessment with respect to manipulating the morphology of lipid bilayers using membrane-deforming proteins.


Asunto(s)
Liposomas/química , Proteínas Asociadas a Microtúbulos/química , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Portadoras/química , Fenómenos Químicos , Proteínas del Citoesqueleto/química , Proteínas de Unión a Ácidos Grasos , Liposomas/ultraestructura , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/clasificación , Antígenos de Histocompatibilidad Menor , Modelos Biológicos , Filogenia
5.
J Phys Chem B ; 121(6): 1396-1404, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28122185

RESUMEN

Zwitterionic polymer brushes draw increasing attention not only because of their superhydrophilic, self-cleaning capability but also due to their excellent antifouling capacity. We investigated the ion-specific modulation of the interfacial interaction potential via densely packed, uniform poly(sulfobetaine) brushes. The vertical Brownian motion of a cell-sized latex particle was monitored by microinterferometry, yielding the effective interfacial interaction potentials V(Δh) and the autocorrelation function of height fluctuation. The potential curvature V″(Δh) exhibited a monotonic increase according to the increase in monovalent salt concentrations, implying the sharpening of the potential confinement. An opposite tendency was observed in CaCl2 solutions, suggesting that the ion specific modulation cannot be explained by the classical Hofmeister series. When the particle fluctuation was monitored in the presence of free sulfobetaine molecules, the increase in [sulfobetaine] resulted in a distinct increase in hydrodynamic friction. This was never observed in all the other salt solutions, suggesting the interference of zwitterionic pairing of sulfobetaine side chains by the intercalation of sulfobetaine molecules into the brush layer. Furthermore, poly(sulfobetaine) brushes exhibited a very low V″(Δh) and hydrodynamic friction to human erythrocytes, which seems to explain the excellent blood repellency of zwitterionic polymer materials.


Asunto(s)
Betaína/análogos & derivados , Polímeros/química , Betaína/química , Interacciones Hidrofóbicas e Hidrofílicas , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA