Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biomed Microdevices ; 23(4): 57, 2021 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-34762163

RESUMEN

Paclitaxel is a commonly used drug in the medical field because of its strong anticancer effect. However, it may produce relatively severe side effects (i.e., allergic reactions). A major characteristic of paclitaxel is low solubility in water. Special solvents are used for dissolving paclitaxel and preparing the paclitaxel drugs, while the solvents themselves will cause certain effects. Polyoxyethylene castor oil, for example, can cause severe allergic reactions in some people, and the clinical use is limited. In this study, we developed a new Paclitaxel/Poly-L-Lactic Acid (PLLA) nanoparticle drug, which is greatly soluble in water, and carried out in vitro drug sustained release research on it and the original paclitaxel drug. However, because the traditional polymer drug carrier usually uses dialysis bag and thermostatic oscillation system to measure the drug release degree in vitro, the results obtained are greatly different from the actual drug release results in human body. Therefore, this paper adopts the microfluidic chip we previously developed to mimic the human blood vessels microenvironment to study the sustained-release of Paclitaxel/PLLA nanoparticles to make the results closer to the release value in human body. The experimental results showed that compared with the original paclitaxel drug, Paclitaxel/PLLA nanoparticles have a long-sustained release time and a slow drug release, realizing the sustained low-dose release of paclitaxel, a cell cycle-specific anticancer drug, and provided certain reference significance and theoretical basis for the research and development of anticancer drugs.


Asunto(s)
Antineoplásicos Fitogénicos , Nanopartículas , Antineoplásicos Fitogénicos/farmacología , Portadores de Fármacos , Liberación de Fármacos , Humanos , Microfluídica , Paclitaxel/farmacología , Poliésteres , Diálisis Renal
2.
J Biomater Appl ; 36(6): 1019-1032, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34605703

RESUMEN

Natural cartilage tissue has excellent mechanical properties and has certain cellular components. At this stage, it is a great challenge to produce cartilage scaffolds with excellent mechanical properties, biocompatibility, and biodegradability. Hydrogels are commonly used in tissue engineering because of their excellent biocompatibility; however, the mechanical properties of commonly used hydrogels are difficult to meet the requirements of making cartilage scaffolds. The mechanical properties of high concentration polyethylene glycol diacrylate (PEGDA) hydrogel are similar to those of natural cartilage, but its biocompatibility is poor. Low concentration hydrogel has better biocompatibility, but its mechanical properties are poor. In this study, two different hydrogels were combined to produce cartilage scaffolds with good mechanical properties and strong biocompatibility. First, the PEGDA grid scaffold was printed with light curing 3D printing technology, and then the low concentration GelMA/Alginate hydrogel with chondral cells was filled into the PEGDA grid scaffold. After a series of cell experiments, the filling hydrogel with the best biocompatibility was screened out, and finally the filled hydrogel with cells and excellent biocompatibility was obtained. Cartilage tissue engineering scaffolds with certain mechanical properties were found to have a tendency of cartilage formation in in vitro culture. Compared with the scaffold obtained by using a single hydrogel, this molding method can produce a tissue engineering scaffold with excellent mechanical properties on the premise of ensuring biocompatibility, which has a certain potential application value in the field of cartilage tissue engineering.


Asunto(s)
Gelatina , Hidrogeles , Acrilamidas , Alginatos , Cartílago , Polietilenglicoles , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA