Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cereb Cortex ; 34(2)2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38216542

RESUMEN

The mutual interaction between bone characteristics and brain had been reported previously, yet whether the cortical structure has any relevance to osteoporosis is questionable. Therefore, we applied a two-sample bidirectional Mendelian randomization analysis to investigate this relationship. We utilized the bone mineral density measurements of femoral neck (n = 32,735) and lumbar spine (n = 28,498) and data on osteoporosis (7300 cases and 358,014 controls). The global surficial area and thickness and 34 specific functional regions of 51,665 patients were screened by magnetic resonance imaging. For the primary estimate, we utilized the inverse-variance weighted method. The Mendelian randomization-Egger intercept test, MR-PRESSO, Cochran's Q test, and "leave-one-out" sensitivity analysis were conducted to assess heterogeneity and pleiotropy. We observed suggestive associations between decreased thickness in the precentral region (OR = 0.034, P = 0.003) and increased chance of having osteoporosis. The results also revealed suggestive causality of decreased bone mineral density in femoral neck to declined total cortical surface area (ß = 1400.230 mm2, P = 0.003), as well as the vulnerability to osteoporosis and reduced thickness in the Parstriangularis region (ß = -0.006 mm, P = 0.002). Our study supports that the brain and skeleton exhibit bidirectional crosstalk, indicating the presence of a mutual brain-bone interaction.


Asunto(s)
Análisis de la Aleatorización Mendeliana , Osteoporosis , Humanos , Osteoporosis/diagnóstico por imagen , Osteoporosis/genética , Encéfalo , Nonoxinol , Radiofármacos , Estudio de Asociación del Genoma Completo
2.
Am J Bot ; 111(3): e16290, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38380953

RESUMEN

PREMISE: Stem xylem transports water and nutrients, mechanically supports aboveground tissues, and stores water and nonstructural carbohydrates. These three functions are associated with three types of cells-vessel, fiber, and parenchyma, respectively. METHODS: We measured stem theoretical hydraulic conductivity (Kt), modulus of elasticity (MOE), tissue water content, starch, soluble sugars, cellulose, and xylem anatomical traits in 15 liana and 16 tree species across three contrasting sites in Southwest China. RESULTS: Lianas had higher hydraulic efficiency and tissue water content, but lower MOE and cellulose than trees. Storage traits (starch and soluble sugars) did not significantly differ between lianas and trees, and trait variation was explained mainly by site, highlighting how environment shapes plant storage strategies. Kt was significantly positively correlated with vessel diameter and vessel area fraction in lianas and all species combined. The MOE was significantly positively correlated with fiber area fraction, wood density, and cellulose in lianas and across all species. The tissue water content was significantly associated with parenchyma area fraction in lianas. Support function was strongly linked with transport and storage functions in lianas. In trees, transport and support functions were not correlated, while storage function was tightly linked with transport and support functions. CONCLUSIONS: These findings enhance our understanding of the relationship between stem xylem structure and function in lianas and trees, providing valuable insights into how plants adapt to environmental changes and the distinct ecological strategies employed by lianas and by trees to balance the demands of hydraulic transport, mechanical support, and storage.


Asunto(s)
Árboles , Xilema , Fenómenos Biomecánicos , Agua , Celulosa , Almidón , Azúcares
3.
Artículo en Inglés | MEDLINE | ID: mdl-38526751

RESUMEN

Vaccines against SARS-CoV-2 have been recommended across the world, yet no study has investigated whether COVID-19 vaccination influences short-term warfarin anti-coagulation levels. Patients on stable warfarin treatment who received anti-SARS-CoV-2 vaccination were prospectively enrolled and followed up for three months. INR values less than 10 days before vaccination (baseline), 3-5 days (short-term) and 6-14 days (medium-term) after vaccination were recorded as INR0, INR1, and INR2, respectively. The variations of INR values within individuals were compared, and the linear mixed effect model was used to evaluate the variations of INR values at different time points. Logistic regression analysis was performed to determine covariates related to INR variations after COVID-19 vaccination. Vaccination safety was also monitored. There was a significant difference in INR values between INR0 and INR1 (2.15 vs. 2.26, p = 0.003), yet no marked difference was found between INR0 and INR2. The linear mixed effect model also demonstrated that INR variation was significant in short-term but not in medium-term or long-term period after vaccination. Logistic regression analysis showed that no investigated covariates, including age, vaccine dose, genetic polymorphisms of VKORC1 and CYP2C9 etc., were associated with short-term INR variations. Two patients (2.11%) reported gingival hemorrhage in the short-term due to increased INR values. The overall safety of COVID-19 vaccines for patients on warfarin was satisfying. COVID-19 vaccines may significantly influence warfarin anticoagulation levels 3-5 days after vaccination. We recommend patients on warfarin to perform at least one INR monitoring within the first week after COVID-19 vaccination.

4.
Biomed Mater ; 19(4)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38729192

RESUMEN

In this study, we coated electrospun polycaprolactone (PCL) fibers with polydopamine (PDA) to modify their hydrophobicity and fabricated a matrix for culturing mesenchymal stem cells (MSCs). Additionally, we incorporated Arg-Gly-Asp (RGD) peptides into PDA to enhance MSCs culture performance on PCL fibers. PDA and RGD were successfully coated in one step by immersing the electrospun fibers in a coating solution, without requiring an additional surface activation process. The characteristics of functionalized PCL fibers were analyzed by scanning electron microscopy with energy-dispersive x-ray analysis, Fourier transform infrared spectroscopy, water contact angle measurement, and fluorescence measurements using a carboxylic-modified fluorescent microsphere. MSCs cultured on the modified PCL fibers demonstrated enhanced cell adhesion, proliferation, and osteogenic- and chondrogenic differentiation. This study provides insight into potential applications for scaffold fabrication in MSCs-based tissue engineering, wound dressing, implantation, and a deeper understanding of MSCs behaviorin vitro.


Asunto(s)
Adhesión Celular , Diferenciación Celular , Proliferación Celular , Indoles , Células Madre Mesenquimatosas , Osteogénesis , Poliésteres , Polímeros , Ingeniería de Tejidos , Andamios del Tejido , Células Madre Mesenquimatosas/citología , Humanos , Polímeros/química , Indoles/química , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Poliésteres/química , Osteogénesis/efectos de los fármacos , Células Cultivadas , Oligopéptidos/química , Oligopéptidos/farmacología , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Condrogénesis/efectos de los fármacos , Técnicas de Cultivo de Célula , Interacciones Hidrofóbicas e Hidrofílicas
5.
Int J Biol Macromol ; 271(Pt 2): 132506, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38772466

RESUMEN

Hydrogels incorporating natural biopolymer and adhesive substances have extensively been used to develop bioactive drugs and to design cells encapsulating sturdy structure for biomedical applications. However, the conjugation of the adhesive in most hydrogels is insufficient to maintain long-lasting biocompatibility inadequate to accelerate internal organ tissue repair in the essential native cellular microenvironment. The current work elaborates the synthesis of charged choline-catechol ionic liquid (BIL) adhesive and a hydrogel with an electronegative atom rich polyphenol (PU)-laden gelatinmethacryloyl (GelMA) to improve the structural bioactivities for in vivo tracheal repair by inducing swift crosslinking along with durable mechanical and tissue adhesive properties. It was observed that bioactive BIL and PU exhibited potent antioxidant (IC 50 % of 7.91 µg/mL and 24.55 µg/mL) and antibacterial activity against E. coli, P. aeruginosa and S. aureus. The novel integration of photocurable GelMA-BIL-PU revealed outstanding mechanical strength, biodegradability and sustained drug release. The in vitro study showed exceptional cell migration and proliferation in HBECs, while in vivo investigation of the GelMA-BIL-PU hydrogel on a rat's tracheal model revealed remarkable tracheal reconstruction, concurrently reducing tissue inflammation. Furthermore, the optimized GelMA-BIL-PU injectable adhesive bioink blend demonstrated superior MSCs migration and proliferation, which could be a strong candidate for developing stem cell-rich biomaterials to address multiple organ defects.


Asunto(s)
Gelatina , Hidrogeles , Células Madre Mesenquimatosas , Metacrilatos , Polifenoles , Tráquea , Tráquea/efectos de los fármacos , Gelatina/química , Polifenoles/farmacología , Polifenoles/química , Animales , Ratas , Metacrilatos/química , Metacrilatos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/citología , Hidrogeles/química , Hidrogeles/farmacología , Regeneración/efectos de los fármacos , Humanos , Antibacterianos/farmacología , Antibacterianos/química , Proliferación Celular/efectos de los fármacos , Antioxidantes/farmacología , Antioxidantes/química , Movimiento Celular/efectos de los fármacos , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología
6.
Int J Biol Macromol ; 274(Pt 2): 133172, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38880458

RESUMEN

In the field of bone tissue repair, the treatment of bone defects has always posed a significant challenge. In recent years, the advancement of bone tissue engineering and regenerative medicine has sparked great interest in the development of innovative bone grafting materials. In this study, a novel hydroxyapatite (HA) material was successfully prepared and comprehensively characterized. Antimicrobial experiments and biological evaluations were conducted to determine its efficacy. Based on the aforementioned research findings, 3D printing technology was employed to fabricate HA/chitosan (CS)/ polycaprolactone (PCL) scaffolds. The composition of the scaffold materials was confirmed through X-ray diffractometer (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR) tests, while the influence of different HA ratios on the scaffold surface morphology was observed. Additionally, antimicrobial experiments demonstrated the favorable antimicrobial activity of the scaffolds containing 30%HA + 5%CS + PCL. Furthermore, the water contact angle measurements confirmed the superhydrophilicity of the scaffolds. Finally, the excellent bioactivity and ability to promote tissue regeneration of the scaffolds were further confirmed by in vitro and in vivo experiments. This study provides new options for future repair and regeneration of bone tissue and clinical applications.


Asunto(s)
Quitosano , Durapatita , Poliésteres , Impresión Tridimensional , Ingeniería de Tejidos , Andamios del Tejido , Quitosano/química , Durapatita/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Poliésteres/química , Huesos/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Escamas de Animales/química , Peces , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Espectroscopía Infrarroja por Transformada de Fourier
7.
Int J Biol Macromol ; 273(Pt 2): 133110, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38876230

RESUMEN

In food packaging, sodium lignosulfonate nanoparticles (SLS NPs) showed significant antibacterial properties, antioxidant and UV barrier activities. Herein, the SLS NPs were synthesized via a sustainable green method and were added into egg albumin/sodium alginate mixture (EA/SA) to fabricate a safe, edible EA/SA/SNPs food packaging. A composite film EA/SA/SNP was examined microstructurally and physicochemically. The mechanical characteristics, UV protection, water resistance, and the composite film's thermal stability were all enhanced by the inclusion of SLS NPs, and water vapor permeability reduced by 44 %. This composite film exhibited robust antioxidative properties with DPPH and ABTS free radical scavenging rates reaching 76.84 % and 92.56 %, and effective antimicrobial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) with antibacterial rates reaching 98.25 % and 97.13 % for the positively charged nanoparticles interacting with the cell membrane. Freshness tests showed that the EA/SA/SNPs packaging film could delay the quality deterioration of fresh tomatoes. This composite film can slow down spoilage bacteria proliferation and prolongs food's preservation period by eight days at ambient temperature.


Asunto(s)
Alginatos , Antibacterianos , Antioxidantes , Embalaje de Alimentos , Lignina , Nanopartículas , Alginatos/química , Alginatos/farmacología , Embalaje de Alimentos/métodos , Nanopartículas/química , Antioxidantes/farmacología , Antioxidantes/química , Antibacterianos/farmacología , Antibacterianos/química , Lignina/química , Lignina/análogos & derivados , Lignina/farmacología , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Permeabilidad , Vapor
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA