Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Mater ; 18(4)2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-37144422

RESUMEN

Increased life expectancy has resulted in an increase in osteoporosis incidence worldwide. The coupling of angiogenesis and osteogenesis is indispensable for bone repair. Although traditional Chinese medicine (TCM) exerts therapeutic effects on osteoporosis, TCM-related scaffolds, which focus on the coupling of angiogenesis and osteogenesis, have not yet been used for the treatment of osteoporotic bone defects.Panax notoginsengsaponin (PNS), the active ingredient ofPanax notoginseng, was added to a poly (L-lactic acid) (PLLA) matrix. Osteopractic total flavone (OTF), the active ingredient ofRhizoma Drynariae, was encapsulated in nano-hydroxyapatite/collagen (nHAC) and added to the PLLA matrix. Magnesium (Mg) particles were added to the PLLA matrix to overcome the bioinert character of PLLA and neutralize the acidic byproducts generated by PLLA. In this OTF-PNS/nHAC/Mg/PLLA scaffold, PNS was released faster than OTF. The control group had an empty bone tunnel; scaffolds containing OTF:PNS = 100:0, 50:50, and 0:100 were used as the treatment groups. Scaffold groups promoted new vessel and bone formation, increased the osteoid tissue, and suppressed the osteoclast activity around osteoporotic bone defects. Scaffold groups upregulated the expression levels of angiogenic and osteogenic proteins. Among these scaffolds, the OTF-PNS (50:50) scaffold exhibited a better capacity for osteogenesis than the OTF-PNS (100:0 and 0:100) scaffolds. Activation of the bone morphogenic protein (BMP)-2/BMP receptor (BMPR)-1A/runt-related transcription factor (RUNX)-2signaling pathway may be a possible mechanism for the promotion of osteogenesis. Our study demonstrated that the OTF-PNS/nHAC/Mg/PLLA scaffold could promote osteogenesis via the coupling of angiogenesis and osteogenesis in osteoporotic rats with bone defects, and activating theBMP-2/BMPR1A/RUNX2signaling pathway may be an osteogenesis-related mechanism. However, further experiments are necessary to facilitate its practical application in the treatment of osteoporotic bone defects.


Asunto(s)
Osteogénesis , Osteoporosis , Ratas , Animales , Ingeniería de Tejidos/métodos , Andamios del Tejido , Huesos/metabolismo , Poliésteres/farmacología , Osteoporosis/terapia , Osteoporosis/metabolismo
2.
J Funct Biomater ; 13(3)2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35997444

RESUMEN

Dental pulp is essential for the development and long-term preservation of teeth. Dental trauma and caries often lead to pulp inflammation. Vital pulp therapy using dental pulp-capping materials is an approach to preserving the vitality of injured dental pulp. Most pulp-capping materials used in clinics have good biocompatibility to promote mineralization, but their anti-inflammatory effect is weak. Therefore, the failure rate will increase when dental pulp inflammation is severe. The present study developed an amorphous calcium phosphate/poly (L-lactic acid)-poly (lactic-co-glycolic acid) membrane compounded with aspirin (hereafter known as ASP/PLGA-ASP/ACP/PLLA-PLGA). The composite membrane, used as a pulp-capping material, effectively achieved the rapid release of high concentrations of the anti-inflammatory drug aspirin during the early stages as well as the long-term release of low concentrations of aspirin and calcium/phosphorus ions during the later stages, which could repair inflamed dental pulp and promote mineralization. Meanwhile, the composite membrane promoted the proliferation of inflamed dental pulp stem cells, downregulated the expression of inflammatory markers, upregulated the expression of mineralization-related markers, and induced the formation of stronger reparative dentin in the rat pulpitis model. These findings indicate that this material may be suitable for use as a pulp-capping material in clinical applications.

3.
ACS Appl Mater Interfaces ; 11(26): 23546-23557, 2019 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-31252468

RESUMEN

Poly(l-lactic acid) (PLLA) and magnesium (Mg) are widely concerned biodegradable materials, but during in vivo implantation, the former produces acidic degradation byproducts and can easily induce inflammation in surrounding tissues, whereas the latter is fast corroded and generates alkaline products. The purpose of this study is to develop Mg/PLLA composite microspheres as a novel delivery system, in which Mg particles are used to regulate the drug release profile and suppress PLLA-induced inflammatory response. Morphological observation shows that multiple Mg particles are dispersed both on the surface and in the interior of composite microspheres. In vitro release study indicates that by varying the Mg contents or its particle sizes, the internal connectivity of composite microspheres is changed during hydrolytic degradation, and drug delivery can be facilely manipulated with tunable release patterns. In vivo release study further confirms the feasibility of Mg/PLLA microspheres for tailoring drug release in a physiological environment. The animal experiment reveals that Mg particles can alleviate macrophage infiltration and inflammatory cytokine expression. These results demonstrate the availability of using biodegradable Mg particles to manipulate drug release as well as alleviate PLLA-induced inflammation. The present Mg/PLLA composite microspheres have potential applications in controlled delivery of various therapeutic agents, especially some growth factors, for bone regeneration.


Asunto(s)
Plásticos Biodegradables/química , Inflamación/prevención & control , Magnesio/química , Microesferas , Animales , Plásticos Biodegradables/efectos adversos , Plásticos Biodegradables/uso terapéutico , Regeneración Ósea/efectos de los fármacos , Quitosano/química , Sistemas de Liberación de Medicamentos , Humanos , Inflamación/inducido químicamente , Inflamación/patología , Macrófagos/efectos de los fármacos , Magnesio/efectos adversos , Magnesio/uso terapéutico , Poliésteres/química , Poliésteres/uso terapéutico , Polímeros/química
4.
Biomaterials ; 223: 119458, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31491598

RESUMEN

Injectable hydrogels are advantageous as tissue regeneration scaffolds, as they can be delivered through a minimally invasive injection and seamlessly integrate with the target tissues. However, an important shortcoming of current injectable hydrogels is the lack of simultaneous control over their micro- and nanoscale structures. In this article, the authors report a strategy for developing injectable hydrogels that integrate a fibrous nanostructure and porous microstructure. The hydrogels are prepared by using novel nanofibrous microparticles as the building blocks. The protein based nanofibrous microparticles, fabricated by a spray freezing technology, can be injected through a syringe-needle system. A cell-compatible photocuring process can be deployed to connect the microparticles and form a mechanically robust hydrogel scaffold. The inter-particle voids combined to form the interconnected micropores and the diameter of the nanofibers (100-300 nm) closely mimics that of the native extracellular matrix. Compared to the non-porous hydrogels and non-fibrous hydrogels, the microparticle annealed nanofibrous (MANF) hydrogels potently enhance the osteogenic-marker expression (ALP, Runx2, OCT and BSP) and mineralization of human mesenchymal stem cells in vitro. MANF hydrogels also facilitate cell infiltration and enhance neovasculization in a subcutaneous implantation model in vivo. The capacity of MANF hydrogels to promote bone regeneration is investigated in a calvarial bone repair model. MANF hydrogels demonstrate significant higher bone regeneration after 8 weeks, indicating the significant role of microporosity and nanofibrous architecture in bone regeneration.


Asunto(s)
Regeneración Ósea , Micropartículas Derivadas de Células , Hidrogeles/química , Nanofibras/química , Ingeniería de Tejidos/instrumentación , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Adhesión Celular , Reactivos de Enlaces Cruzados , Matriz Extracelular/química , Gelatina , Humanos , Inyecciones , Células Madre Mesenquimatosas , Microscopía Electrónica de Rastreo , Nitrógeno/química , Osteogénesis , Polímeros/química , Ratas , Ratas Sprague-Dawley , Medicina Regenerativa/métodos , Estrés Mecánico , Ingeniería de Tejidos/métodos , Cicatrización de Heridas , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA