Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Environ Res ; 246: 118200, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220077

RESUMEN

Organic polymers hold great potential in photocatalysis considering their low cost, structural tailorability, and well-controlled degree of conjugation for efficient electron transfer. Among the polymers, Schiff base networks (SNWs) with high nitrogen content have been noticed. Herein, a series of SNWs is synthesized based on the melamine units and dialdehydes with different bonding sites. The chemical and structural variation caused by steric hindrance as well as the related photoelectric properties of the SNW samples are investigated, along with the application exploration on photocatalytic degradation and energy production. The results demonstrate that only SNW-o based on o-phthalaldehyde responds to visible light, which extends to over 550 nm. SNW-o shows the highest tetracycline degradation rate of 0.02516 min-1, under 60-min visible light irradiation. Moreover, the H2O2 production of SNW-o is 2.14 times higher than that of g-C3N4. The enhanced photocatalytic activity could be ascribed to the enlarged visible light adsorption and intramolecular electron transfer. This study indicates the possibility to regulate the optical and electrical properties of organic photocatalysts on a molecular level, providing an effective strategy for rational supramolecular engineering to the applications of organic materials in photocatalysis.


Asunto(s)
Peróxido de Hidrógeno , Bases de Schiff , Luz , Antibacterianos , Polímeros
2.
Sci Total Environ ; 844: 156924, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35779737

RESUMEN

Arsenic is one of the most common and harmful pollutants in environment throughout the world, especially in aqueous solutions. In this study, two kinds of industrial solid wastes (Oxide scale (OS) and Blast furnace slag (BFS)) and one kind of phytoremediation plant waste (Ramie stalk) were used to prepare an environmentally friendly, low-cost, and efficient calcium silicate coated nano zero-valent iron (nZVI)/biochar composite (BOS) for As(V) adsorption. The potential environmental risks of BOS and their effects on removal of arsenic ions from aqueous media were investigated. The adsorption mechanism was explored and discussed based on XRD, SEM-EDS, XPS, etc. The results suggested that the environmental risk and heavy metals toxicity in BOS by co-pyrolysis were significantly reduced compared to the original materials, and no additional contaminant was observed in the subsequent experiments. Simultaneously, the BOS showed excellent As(V) removal capacity (>99%) and regenerative properties. The As(V) removal mechanisms are mainly ascribed to the complexation and co-precipitation between Fe and As, and the hydrogen bond between CO functional group of BOS and As. The mechanism of enhanced nZVI activity for As(V) removal was revealed. A protective layer of Ca2SiO4 was formed on the surface of nZVI during the co-pyrolysis process to prevent the passivation of nZVI. During the reaction process, the Ca2SiO4 covering the nZVI surface would be continuously detached to expose the fresh surface of nZVI, thus providing more redox activity and adsorption sites. This study provides a new way to treat and recycle industrial steel solid wastes and phytoremediation plant wastes, and the produced calcium silicate coated-nZVI/biochar composite is proposed to be a very promising material for practical remediation of As(V)-contaminated water bodies.


Asunto(s)
Arsénico , Boehmeria , Contaminantes Químicos del Agua , Adsorción , Arsénico/análisis , Biodegradación Ambiental , Compuestos de Calcio , Carbón Orgánico/química , Residuos Industriales , Hierro/química , Medición de Riesgo , Silicatos , Residuos Sólidos , Acero , Contaminantes Químicos del Agua/análisis
3.
Water Res ; 225: 119191, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36215841

RESUMEN

There are numerous studies concerning the impacts of widespread microplastic pollution on the ecological environment, and it shows synergistic effect of microplastics and co-exposed pollutants in risk enhancement. However, the control methods for removing harmful pollutants from microplastic surface to reduce their ecological toxicity has rarely been explored. In this paper, magnetic graphitized biochar as a catalyst is shown to achieve 97% removal of tetrabromobisphenol A (TBBPA) from microplastics by biochar mediated electron transfer. The changes in the surface and structure of microplastics caused by various aging processes affected the pollutant attachment and subsequent removal efficiency. After chlorination, the highest disinfection by-product (DBP) generation potential was observed by the group of microplastics attached with TBBPA. The oxidation system of biochar activating peroxodisulfate (PDS) can not only reduce the kinds of DBPs, but also greatly reduce the total amount of detected DBPs by 76%, as well as reducing the overall toxicity. This paper highlights an overlooked contribution of pollutant attachment to the potential risks of DBP generated from natural microplastics during chlorination process, and provides the underlying insights to guide the design of a biochar-based catalyst from wastes to achieve the removal of TBBPA from microplastics and reduce the risks and hazards of co-contamination.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Desinfección , Plásticos , Contaminantes Químicos del Agua/análisis
4.
Environ Pollut ; 295: 118695, 2022 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-34921945

RESUMEN

The negative impact of microplastics (MPs) act as metals vectors to environment and ecosystem have been paid more and more attention, and the accumulation risk of them to human body through the food chains and food webs needs to attract attention. In addition, the MPs bonded with heavy metals transport from river into the sea with high salinity may also have metals release risk. Herein, natural aged microplastics prepared from artificially broken macroplastics adsorbed with heavy metals accumulated from the natural environment were tested for their states and release risk in several simulated solution (NaCl and gastrointestinal solutions) to understand their effects on environment and human health. The adsorption capacity of different heavy metals on MPs was different during natural aging process proved by four-acid digestion method. Metals with high accumulation (including Pb, As, Cr, Mn, Ni, Zn, Co, Cu and Cd) on NAMPs were selected for further study. Results obtained via three-step extraction method showed that these heavy metals were mainly present as acid-extractable and reducible ions, which were characterized by high bioavailability. Release experiments suggested the notable Mn, Zn, As, Cr, Cu and Ni release in NaCl solution, and significant release of Mn, Zn, As, Cr, Cu, Pb and Ni in gastrointestinal solutions. The high metal release ratio in the simulated gastric solution was attributed to the weak binding of metal ions to NAMPs in acidic environment. This study will play a vital rule in assessing the ecological risks associated with MPs in natural environment.


Asunto(s)
Metales Pesados , Microplásticos , Anciano , China , Ecosistema , Monitoreo del Ambiente , Humanos , Metales Pesados/análisis , Plásticos , Medición de Riesgo
5.
Water Res ; 179: 115876, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32387922

RESUMEN

Natural-aged microplastics with changed surface properties accumulate, redistribute and spread in all water fields as carriers of hazardous substances. The combined hazard of co-contamination of microplastics and hazardous substances expands the ecological risks, which urgently needs to design treatment schemes for pollutant removal from microplastics. In this paper, a facile and applicable magnetic biochar with porosity and graphitization (PGMB) was prepared for realizing the goal of metal removal from the microplastics. Heterogeneous catalysis of persulfate (PS) activated by PGMB achieved the decomposition of organics, with the decrease of more than 60% of the attached Pb on the surface of microplastics, and the adsorbed metal amount by PGMB in this system (31.29 mg/g) is much higher than that by the individual PGMB group (7.07 mg/g). Analysis demonstrated that the organic layer covered on the microplastic surface over the long-term weathering provided the key sites for metal sorption, whose decomposition and peeling were the critical steps in whole process. The prepared PGMB was responsible for activating PS to produce reactive species for decomposing the organic matter accompanied with detaching metals from microplastic surface, also would keep the role for re-adsorption of the released metals and separation from aqueous phase by magnetic force. The influences of natural environmental factors including salinity, common matrix species, and temperature on the performance of PGMB/PS system for metal removal from microplastics were discussed to illustrate the universality of the scheme in saline or organic-rich waters. The results of this study provided underlying insights for removing metals from microplastic surface, and decreasing the harm risks in the co-contamination of microplastics and hazardous substances.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Adsorción , Catálisis , Carbón Orgánico , Fenómenos Magnéticos , Metales , Microplásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA