Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Pharm ; 496(2): 822-33, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26474963

RESUMEN

This paper reported the facile fabrication of drug delivery devices for zero-order sustained release by molecular crowding strategy of molecularly imprinting technology. Crowding-assisted molecularly imprinting polymers (MIPs) matrices were prepared by free-radical precipitation polymerization using aminoglutethimide (AG) as a model drug. The crowding effect was achieved by adding polystyrene as a macromolecular co-solute in pre-polymerization mixture. The MIP prepared under the non-MMC condition and the two corresponding non-imprinted particles were tested as controlled vehicles. The release profiles presented zero-order behaviors from two crowding-assisted polymers, the duration of approximately 18h for the crowding-assisted MIP and 10h for the crowding-assisted NIP, respectively while AG were all very rapid released from the other two controlled particles (85% occurring in the first hour). The BET surface area and pore volume of the crowding-assisted MIP were about ten times than those of the controlled MIP. The value of imprinting factor is 6.02 for the crowding-assisted MIP and 1.19 for the controlled MIP evaluated by the equilibrium adsorption experiment. Furthermore, the values of effective diffusivity (Deff) obtained from crowding-assisted MIP (10(-17)cm(2)/s) was about two orders of magnitude smaller than those from the controlled MIP, although the values of free drug diffusivity (D) were all found in the order of 10(-13)cm(2)/s. Compared with the commercial AG tablet, the MMC-assisted MIP gave a markedly high relative bioavailability of 266.3%, whereas the MMC-assisted NIP gave only 57.7%. The results indicated that the MMC condition can modulate the polymer networks approaciate to zero-order release of the drug and maintain the molecular memory pockets, even if under the poor polymerization conditions of MIPs preparation.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Impresión Molecular/métodos , Aminoglutetimida/química , Animales , Preparaciones de Acción Retardada , Matemática , Polimerizacion , Poliestirenos/química , Ratas , Ratas Wistar , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA