Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Am Chem Soc ; 144(31): 14269-14277, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35914188

RESUMEN

Although the mass production of synthetic plastics has transformed human lives, it has resulted in waste accumulation on the earth. Here, we report a low-temperature conversion of polyethylene into olefins. By mixing the polyethylene feed with rationally designed ZSM-5 zeolite nanosheets at 280 °C in flowing hydrogen as a carrier gas, light hydrocarbons (C1-C7) were produced with a yield of up to 74.6%, where 83.9% of these products were C3-C6 olefins with almost undetectable coke formation. The reaction proceeds in multiple steps, including polyethylene melting, flowing to access the zeolite surface, cracking on the zeolite surface, formation of intermediates to diffuse into the zeolite micropores, and cracking into small molecules in the zeolite micropores. The ZSM-5 zeolite nanosheets kinetically matched the cascade cracking steps on the zeolite external surface and within micropores by boosting the intermediate diffusion. This feature efficiently suppressed the intermediate accumulation on the zeolite surface to minimize coke formation. In addition, we found that hydrogen participation in the cracking process could hinder the formation of polycyclic species within zeolite micropores, which also contributes to the rapid molecule diffusion. The coking-resistant polyethylene upcycling process at a low temperature not only overturns the general viewpoint for facile coke formation in the catalytic cracking over the zeolites but also demonstrates how the polyethylene-based plastics can be upcycled to valuable chemicals. In addition to the model polyethylene, the reaction system worked efficiently for the depolymerization of multiple practically used polyethylene-rich plastics, enabling an industrially and economically viable path for dealing with plastic wastes.


Asunto(s)
Coque , Zeolitas , Alquenos/química , Humanos , Hidrógeno , Plásticos , Polietileno , Zeolitas/química
2.
ACS Appl Mater Interfaces ; 12(20): 23002-23009, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32338862

RESUMEN

Multifunctional metal-organic frameworks (MOFs) that possess permanent porosity are promising catalysts in organic transformation. Herein, we report the construction of a hierarchical MOF functionalized with basic aliphatic amine groups and polyvinylpyrrolidone-capped platinum nanoparticles (Pt NPs). The postsynthetic covalent modification of organic ligands increases basic site density in the MOF and simultaneously introduces mesopores to create a hierarchically porous structure. The multifunctional MOF is capable of catalyzing a sequential Knoevenagel condensation-hydrogenation-intramolecular cyclization reaction. The unique selective reduction of the nitro group to intermediate hydroxylamine by Pt NPs supported on MOF followed by intramolecular cyclization with a cyano group affords an excellent yield (up to 92%) to the uncommon quinoline N-oxides over quinolines. The hierarchical MOF and polyvinylpyrrolidone capping agent on Pt NPs synergistically facilitate the enrichment of substrates and thus lead to high activity in the reduction-intramolecular cyclization reaction. The bioactivity assay indicates that the synthesized quinoline N-oxides evidently inhibit the proliferation of lung cancer cells. Our findings demonstrate the feasibility of MOF-catalyzed direct synthesis of bioactive molecules from readily available compounds under mild conditions.


Asunto(s)
Óxidos N-Cíclicos/síntesis química , Nanopartículas del Metal/química , Estructuras Metalorgánicas/química , Quinolinas/síntesis química , Antineoplásicos/síntesis química , Antineoplásicos/farmacología , Catálisis , Óxidos N-Cíclicos/farmacología , Ciclización , Ensayos de Selección de Medicamentos Antitumorales , Células Hep G2 , Humanos , Oxidación-Reducción , Platino (Metal)/química , Porosidad , Povidona/química , Quinolinas/farmacología
4.
J Chromatogr A ; 1321: 38-47, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24231262

RESUMEN

A cellulose derivative-based chiral stationary phase (CSP) is considered one of the most widely applied CSPs due to its powerful enantioseparation ability. The high loading capacity and mechanical strength of CSPs are crucial for their application in preparative chromatography, such as a simulated moving bed. Compared to traditional cellulose-based CSPs that have been adsorbed onto chromatographic supports, organic-inorganic hybrid CSPs exhibit a potentially higher loading capacity and mechanical strength by increasing the density of chiral recognition groups. A hybrid cellulose 3,5-dimethylphenylcarbamate chiral stationary phase (organic/inorganic: 70/30, w/w) was prepared via a sol-gel method and characterized with several analytical techniques, including Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and (29)Si cross polarization/magic angle spinning nuclear magnetic resonance ((29)Si CP/MAS NMR). In addition, the as-synthesized hybrid chiral silica spheres were treated with an end-capping process to mask the residual silica hydroxyl groups. Compared to a commercial Chiralpak IB column, better separation of ß-blocker drugs, including pindolol (selectivity of 5.55), metoprolol (2.30), propranolol (1.96), bisoprolol (1.74) and atenolol (1.46), on the end-capped CSP was achieved using liquid chromatography, which suggests that the packing material synthesized in this work has sufficient chiral discriminating ability for the effective separation of ß-blocker drugs.


Asunto(s)
Antagonistas Adrenérgicos beta/aislamiento & purificación , Carbamatos/síntesis química , Celulosa/análogos & derivados , Estereoisomerismo , Carbamatos/química , Celulosa/síntesis química , Celulosa/química , Cromatografía Líquida de Alta Presión , Espectroscopía de Resonancia Magnética , Microscopía Electrónica de Rastreo , Espectrometría por Rayos X , Espectrofotometría Infrarroja , Termogravimetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA