Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Hazard Mater ; 430: 128431, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35150991

RESUMEN

Microplastics (MPs) pollution has become a serious environmental issue worldwide, but its potential effects on health remain unknown. The administration of polystyrene MPs (PS-MPs) to mice for eight weeks impaired learning and memory behavior. PS-MPs were detected in the brain especially in the hippocampus of these mice. Concurrently, the hippocampus had decreased levels of immediate-early genes, aberrantly enhanced synaptic glutamate AMPA receptors, and elevated neuroinflammation, all of which are critical for synaptic plasticity and memory. Interestingly, ablation of the vagus nerve, a modulator of the gut-brain axis, improved the memory function of PS-MPs mice. These results indicate that exposure to PS-MPs in mice alters the expression of neuronal activity-dependent genes and synaptic proteins, and increases neuroinflammation in the hippocampus, subsequently causing behavioral changes through the vagus nerve-dependent pathway. Our findings shed light on the adverse impacts of PS-MPs on the brain and hippocampal learning and memory.


Asunto(s)
Microplásticos , Poliestirenos , Animales , Ácido Glutámico , Hipocampo , Ratones , Plásticos , Poliestirenos/toxicidad
2.
Polymers (Basel) ; 13(23)2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34883772

RESUMEN

Many revolutionary approaches are on the way pertaining to the high occurrence of tooth decay, which is an enduring challenge in the field of preventive dentistry. However, an ideal dental care material has yet to be fully developed. With this aim, this research reports a dramatic enhancement in the rehardening potential of surface-etched enamels through a plausible synergistic effect of the novel combination of γ-polyglutamic acid (γ-PGA) and nano-hydroxyapatite (nano-HAp) paste, within the limitations of the study. The percentage of recovery of the surface microhardness (SMHR%) and the surface parameters for 9 wt% γ-PGA/nano-HAp paste on acid-etched enamel were investigated with a Vickers microhardness tester and an atomic force microscope, respectively. This in vitro study demonstrates that γ-PGA/nano-HAp treatment could increase the SMHR% of etched enamel to 39.59 ± 6.69% in 30 min. To test the hypothesis of the rehardening mechanism and the preventive effect of the γ-PGA/nano-HAp paste, the surface parameters of mean peak spacing (Rsm) and mean arithmetic surface roughness (Ra) were both measured and compared to the specimens subjected to demineralization and/or remineralization. After the treatment of γ-PGA/nano-HAp on the etched surface, the reduction in Rsm from 999 ± 120 nm to 700 ± 80 nm suggests the possible mechanism of void-filling within a short treatment time of 10 min. Furthermore, ΔRa-I, the roughness change due to etching before remineralization, was 23.15 ± 3.23 nm, while ΔRa-II, the roughness change after remineralization, was 11.99 ± 3.90 nm. This statistically significant reduction in roughness change (p < 0.05) implies a protective effect against the demineralization process. The as-developed novel γ-PGA/nano-HAp paste possesses a high efficacy towards tooth microhardness rehardening, and a protective effect against acid etching.

3.
Biomed Mater ; 10(2): 025009, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25886478

RESUMEN

New insight on the conversion of amorphous calcium phosphate (ACP) to nano-sized alpha tricalcium phosphate (α-TCP) provides a faster pathway to calcium phosphate bone cements. In this work, synthesized ACP powders were treated with either water or ethanol, dried, crystallized between 700 and 800 °C, and then cooled at different cooling rates. Particle size was measured in a scanning electron microscope, but crystallite size calculated by Rietveld analysis. Phase composition and bonding in the crystallized powder was assessed by x-ray diffraction and Fourier-transform infrared spectroscopy. Results showed that 50 nm sized α-TCP formed after crystallization of lyophilized powders. Water treated ACP retained an unstable state that may allow ordering to nanoapatite, and further transition to ß-TCP after crystallization and subsequent decomposition. Powders treated with ethanol, favoured the formation of pure α-TCP. Faster cooling limited the growth of ß-TCP. Both the initial contact with water and the cooling rate after crystallization dictated ß-TCP formation. Nano-sized α-TCP reacted faster with water to an apatite bone cement than conventionally prepared α-TCP. Water treated and freeze-dried powders showed faster apatite cement formation compared to ethanol treated powders. Good biocompatibility was found in pure α-TCP nanoparticles made from ethanol treatment and with a larger crystallite size. This is the first report of pure α-TCP nanoparticles with a reactivity that has not required additional milling to cause cementation.


Asunto(s)
Cementos para Huesos/química , Fosfatos de Calcio/química , Nanopartículas/química , Apatitas/química , Cementos para Huesos/toxicidad , Fosfatos de Calcio/toxicidad , Células Cultivadas , Cristalización , Calor , Humanos , Ensayo de Materiales , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Microscopía Electrónica de Rastreo , Nanopartículas/toxicidad , Nanopartículas/ultraestructura , Tamaño de la Partícula , Difracción de Polvo , Polvos , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA