Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 21(7): 259, 2020 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-32914285

RESUMEN

Nanomedicines such as liposomes have been widely exploited in the treatment of tumors, and are also involved in combination therapies to enhance anti-tumor efficacy and reduce side effects. However, few studies have systematically discussed the significance and optimized regimens for nanomedicine-based combination therapy. In this study, we used anti-inflammatory and anti-tumor liposomes for co-administration, and compared three regimens: intermittent, metronomic, or sequential administration (IA, MA, and SA). The anti-inflammatory liposome HA/TN-CCLP was constructed in our previous research, which co-loaded curcumin (CUR) and celecoxib (CXB), modified with TAT-NBD peptide (TN) and finally coated with hyaluronic acid (HA), thereby inhibiting NF-κB and STAT3 pathways in the treatment of metastatic breast cancer. Furthermore, doxorubicin liposomes with and without TN modification (namely TN-DOXLP and DOXLP) were constructed and administrated with HA/TN-CCLP. The anti-tumor and anti-metastasis efficacy of different regimens was investigated. Results showed that in vitro cytotoxicity of DOXLP and TN-DOXLP was significantly enhanced when combined with HA/TN-CCLP. In vivo experiments also revealed the superiority of three combination therapies in inhibiting tumor growth, prolonging the survival of tumor-bearing mice, inducing apoptosis, and reducing lung metastases. In particular, the combination therapy could reduce MDSCs (Gr-1+/CD11b+) and CSCs (CD44+/CD24+) infiltration, which are two important factors in tumor metastasis and recurrence. Among three regimens, sequential administration (SA) showed the best therapeutic outcome and was especially effective for the inhibition of CSCs. In general, the results demonstrated that combination therapy, particularly the sequential administration of anti-inflammatory and anti-tumor liposome, was superior to monotherapy in inhibiting the development and metastasis of inflammation-related tumors.


Asunto(s)
Antiinflamatorios/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Liposomas/uso terapéutico , Animales , Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Celecoxib/farmacología , Curcumina/farmacología , Doxorrubicina/análogos & derivados , Femenino , Humanos , Receptores de Hialuranos , Ácido Hialurónico/farmacología , Ratones , Nanomedicina , Metástasis de la Neoplasia , Polietilenglicoles
2.
Adv Healthc Mater ; 13(10): e2304059, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38267400

RESUMEN

Bioadhesive hydrogels offer unprecedented opportunities in hemostatic agents and tissue sealing; however, the application of existing bioadhesive hydrogels through narrow spaces to achieve strong adhesion in fluid-rich physiological environments is challenged either by undesired indiscriminate adhesion or weak wet tissue adhesion. Here, a laparoscopically compatible asymmetric adhesive hydrogel (aAH) composed of sprayable adhesive hydrogel powders and injectable anti-adhesive glue is proposed for hemostasis and to seal the bloody tissues in a non-pressing way, allowing for preventing postoperative adhesion. The powders can seed on the irregular bloody wound to rapidly absorb interfacial fluid, crosslink, and form an adhesive hydrogel to hemostatic seal (blood clotting time and tissue sealing in 10 s, ≈200 mm Hg of burst pressure in sealed porcine tissues). The aAH can be simply formed by crosslinking the upper powder with injectable glue to prevent postoperative adhesion (adhesive strength as low as 1 kPa). The aAH outperforms commercial hemostatic agents and sealants in the sealing of bleeding organs in live rats, demonstrating superior anti-adhesive efficiency. Further, the hemostatic seamless sealing by aAH succeeds in shortening the time of warm ischemia, decreasing the blood loss, and reducing the possibility of rebleeding in the porcine laparoscopic partial nephrectomy model.


Asunto(s)
Materiales Biocompatibles , Hemostáticos , Ratas , Porcinos , Animales , Adherencias Tisulares/prevención & control , Hidrogeles/farmacología , Hemostáticos/farmacología , Hemostasis , Hemorragia
3.
Adv Healthc Mater ; 13(16): e2303314, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38558386

RESUMEN

Nonhealing diabetic wounds are predominantly attributed to the inhibition of angiogenesis, re-epithelialization, and extracellular matrix (ECM) synthesis caused by hypoxia. Although oxygen therapy has demonstrated efficacy in promoting healing, its therapeutic impact remains suboptimal due to unsustainable oxygenation. Here, this work proposes an oxygen-releasing hydrogel patch embedded with polyethylene glycol-modified calcium peroxide microparticles, which sustainably releases oxygen for 7 days without requiring any supplementary conditions. The released oxygen effectively promotes cell migration and angiogenesis under hypoxic conditions as validated in vitro. The in vivo tests in diabetic mice models show that the sustainably released oxygen significantly facilitates the synthesis of ECM, induces angiogenesis, and decreases the expression of inflammatory cytokines, achieving a diabetic wound healing rate of 84.2% on day 7, outperforming the existing oxygen-releasing approaches. Moreover, the proposed hydrogel patch is designed with porous, soft, antibacterial, biodegradable, and storage stability for 15 days. The proposed hydrogel patch is expected to be promising in clinics treating diabetic wounds.


Asunto(s)
Diabetes Mellitus Experimental , Hidrogeles , Oxígeno , Peróxidos , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Animales , Hidrogeles/química , Hidrogeles/farmacología , Ratones , Oxígeno/química , Peróxidos/química , Peróxidos/farmacología , Humanos , Polietilenglicoles/química , Neovascularización Fisiológica/efectos de los fármacos , Masculino , Células Endoteliales de la Vena Umbilical Humana , Movimiento Celular/efectos de los fármacos
4.
J Control Release ; 344: 62-79, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35182612

RESUMEN

Low levels of accumulation and permeability in tumors are two primary reasons for the limited efficacy of conventional antineoplastic nanodrugs. In the present study, based on an original corosolic acid liposome (CALP) carrier with the functions of cell penetration, tumor permeability and anti-inflammation developed by our previous work, a versatile PTX/CALP was achieved by CALP loading paclitaxel (PTX). Compared to conventional PTX liposomes (PTX/LP) prepared by cholesterol and phospholipid, PTX/CALP exhibited extremely increasing cellular uptake and cytotoxicity in vitro, and in vivo enhancing the accumulation and permeability of tumor, thus significantly improving the antitumor efficacy. Further evidence indicated that PTX/CALP conspicuously promoted the recruitment of CD8+ T cells as well as reduced the infiltration of regulatory T cells and M2 macrophages into tumor by inducing enhanced immunogenic cell death (ICD) and down-regulating the inflammation level. Therefore, the improvement of efficacy was also attributed to the superiorities of PTX/CALP in modulating the inflammatory and immunosuppressive tumor microenvironment. Overall, the smart PTX liposomes based on the multi-functional CALP carrier without any modification could overcome the harsh tumor biological barriers, enhance the induction of ICD and then achieve satisfactory efficacy, suggesting its promising potentials in industrial transfer and clinical application.


Asunto(s)
Antineoplásicos Fitogénicos , Liposomas , Animales , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Linfocitos T CD8-positivos , Línea Celular Tumoral , Liposomas/uso terapéutico , Ratones , Ratones Endogámicos BALB C , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Microambiente Tumoral
5.
J Control Release ; 337: 224-235, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34298057

RESUMEN

Aortic dissection (AD) is a life-threatening disease featured by the dissection of intimal layer and the formation of a blood-filled false lumen within the aortic wall. Recent studies revealed that the formation and progression of AD lesions is closely related to vascular inflammation and macrophage infiltration. However, the potential efficacy of anti-inflammatory therapy on the prevention and treatment of AD has not been extensively investigated. Herein, we proposed a biomimetic anti-inflammatory liposome (PM/TN-CCLP) co-loaded with curcumin and celecoxib (CC), modified with cell-penetrating TAT-NBD fusion peptide (TN), and further camouflaged by isolated macrophage plasma membrane (PM), as a potential nanotherapy for AD. In vitro results showed that PM/TN-CCLP exhibited low cytotoxicity and elevated cellular uptake by inflammatory macrophages, and prominently inhibited the transendothelial migration, inflammatory responses and ROS generation of macrophages. Moreover, the PM/TN-CCLP treatment significantly prevented the H2O2-induced smooth muscle cell apoptosis. In vivo experiments were performed on the acute and chronic AD mouse models, respectively. The results verified the elevated accumulation of PM-camouflaged liposome at the aorta lesions. Further, the anti-inflammatory liposomes, especially PM/TN-CCLP, could reduce the rupture rate of dissection, prevent the loss of elastic fibers, and reduce MMP-9 expression as well as macrophage infiltration in the aortic lesions. Notably, as compared with free drugs and TN-CCLP, the PM/TN-CCLP treatment displayed the longest survival period along with the minimal aortic injury on both acute and chronic AD mice. Taken together, the present study suggested that the macrophage-biomimetic anti-inflammatory nanotherapy would be a promising strategy for the prevention and therapy of aortic dissection.


Asunto(s)
Disección Aórtica , Liposomas , Disección Aórtica/tratamiento farmacológico , Animales , Antiinflamatorios , Biomimética , Peróxido de Hidrógeno , Macrófagos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA