RESUMEN
Infectious oral diseases are longstanding global public health concerns. However, traditional medical approaches to address these diseases are costly, traumatic, and prone to relapse. Here, we propose a foodborne prophylactic strategy using aloin to safeguard dental collagen. The effect of aloin on the stability of dental collagen was evaluated by treating dentin with a solution containing aloin (0.1 mg/mL) for 2 min. This concentration is comparable to the natural aloin content of edible aloe. Furthermore, we investigated the mechanisms underlying the interactions between aloin and dentin collagen. Our findings, obtained through fluorescence spectroscopy, attenuated total reflection Fourier transform infrared spectroscopy, Gaussian peak fitting, circular dichroism spectroscopy, and X-ray diffraction, revealed that aloin interacts with dental collagen through noncovalent bonding, specifically hydrogen bonding in situ. This interaction leads to a reduction in the distance between molecules and an increase in the proportion of stable α-helical chains in the dental collagen. The ultimate tensile strength and thermogravimetric analysis demonstrated that dental collagen treated with aloin exhibited improved mechanical strength and thermostability. Additionally, the release of hydroxyproline, cross-linked carboxy-terminal telopeptide of type I collagen, and C-terminal cross-linked telopeptide of type I collagen, along with weight loss, indicated an enhancement in the enzymatic stability of dental collagen. These findings suggest that aloin administration could be a daily, nondestructive, and cost-effective strategy for managing infectious oral diseases.
RESUMEN
This in vitro study aimed to put forward the development and investigation of a novel Mixed Reality (MR)-based dental implant navigation method and evaluate implant accuracy. Data were collected using 3D-cone beam computed tomography. The MR-based navigation system included a Hololens headset, an NDI (Northern Digital Inc.) Polaris optical tracking system, and a computer. A software system was developed. Resin models of dentition defects were created for a randomized comparison study with the MR-based navigation implantation system (MR group, n = 25) and the conventional free-hand approach (FH group, n = 25). Implant surgery on the models was completed by an oral surgeon. The precision and feasibility of the MR-based navigation method in dental implant surgery were assessed and evaluated by calculating the entry deviation, middle deviation, apex deviation, and angular deviation values of the implant. The system, including both the hardware and software, for the MR-based dental implant navigation method were successfully developed and a workflow of the method was established. Three-Dimensional (3D) reconstruction and visualization of the surgical instruments, dentition, and jawbone were achieved. Real-time tracking of implant tools and jaw model, holographic display via the MR headset, surgical guidance, and visualization of the intraoperative implant trajectory deviation from the planned trajectory were captured by our system. The MR-based navigation system was with better precise than the free-hand approach for entry deviation (MR: 0.6914 ± 0.2507 mm, FH: 1.571 ± 0.5004 mm, P = 0.000), middle deviation (MR: 0.7156 ± 0.2127 mm, FH: 1.170 ± 0.3448 mm, P = 0.000), apex deviation (MR: 0.7869 ± 0.2298 mm, FH: 0.9190 ± 0.3319 mm, P = 0.1082), and angular deviation (MR: 1.849 ± 0.6120°, FH: 4.933 ± 1.650°, P = 0.000).
Asunto(s)
Realidad Aumentada , Implantes Dentales , Cirugía Asistida por Computador , Cirugía Asistida por Computador/métodos , Proyectos Piloto , Tomografía Computarizada de Haz Cónico/métodos , Imagenología Tridimensional/métodos , Diseño Asistido por ComputadoraRESUMEN
Stable and bioactive material-tissue interface (MTF) basically determines the clinical applications of biomaterials in wound healing, sustained drug release, and tissue engineering. Although many inorganic nanomaterials have been widely explored to enhance the stability and bioactivity of polymer-based biomaterials, most are still restricted by their stability and biocompatibility. Here we demonstrate the enhanced bioactivity and stability of polymer-matrix bio-composite through coupling multiscale material-tissue interfacial interactions with atomically thin TiO2 nanosheets. Resin modified with TiO2 nanosheets displays improved mechanical properties, hydrophilicity, and stability. Also, we confirm that this resin can effectively stimulate the adhesion, proliferation, and differentiation into osteogenic and odontogenic lineages of human dental pulp stem cells using in vitro cell-resin interface model. TiO2 nanosheets can also enhance the interaction between demineralized dentinal collagen and resin. Our results suggest an approach to effectively up-regulate the stability and bioactivity of MTFs by designing biocompatible materials at the sub-nanoscale. Electronic Supplementary Material: Supplementary material (further details of fabrication and characterization of TiO2 NSs and TiO2-ARCs, the bioactivity evaluation of TiO2-ARCs on hDPSCs, and the measurement of interaction with demineralized dentin collagen) is available in the online version of this article at 10.1007/s12274-022-5153-1.