Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Ann Rheum Dis ; 81(10): 1453-1464, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35868845

RESUMEN

OBJECTIVES: To test the hypothesis that ROSAH (retinal dystrophy, optic nerve oedema, splenomegaly, anhidrosis and headache) syndrome, caused by dominant mutation in ALPK1, is an autoinflammatory disease. METHODS: This cohort study systematically evaluated 27 patients with ROSAH syndrome for inflammatory features and investigated the effect of ALPK1 mutations on immune signalling. Clinical, immunologic and radiographical examinations were performed, and 10 patients were empirically initiated on anticytokine therapy and monitored. Exome sequencing was used to identify a new pathogenic variant. Cytokine profiling, transcriptomics, immunoblotting and knock-in mice were used to assess the impact of ALPK1 mutations on protein function and immune signalling. RESULTS: The majority of the cohort carried the p.Thr237Met mutation but we also identified a new ROSAH-associated mutation, p.Tyr254Cys.Nearly all patients exhibited at least one feature consistent with inflammation including recurrent fever, headaches with meningeal enhancement and premature basal ganglia/brainstem mineralisation on MRI, deforming arthritis and AA amyloidosis. However, there was significant phenotypic variation, even within families and some adults lacked functional visual deficits. While anti-TNF and anti-IL-1 therapies suppressed systemic inflammation and improved quality of life, anti-IL-6 (tocilizumab) was the only anticytokine therapy that improved intraocular inflammation (two of two patients).Patients' primary samples and in vitro assays with mutated ALPK1 constructs showed immune activation with increased NF-κB signalling, STAT1 phosphorylation and interferon gene expression signature. Knock-in mice with the Alpk1 T237M mutation exhibited subclinical inflammation.Clinical features not conventionally attributed to inflammation were also common in the cohort and included short dental roots, enamel defects and decreased salivary flow. CONCLUSION: ROSAH syndrome is an autoinflammatory disease caused by gain-of-function mutations in ALPK1 and some features of disease are amenable to immunomodulatory therapy.


Asunto(s)
Enfermedades Autoinflamatorias Hereditarias , FN-kappa B , Proteínas Quinasas/genética , Amiloidosis , Animales , Estudios de Cohortes , Mutación con Ganancia de Función , Enfermedades Autoinflamatorias Hereditarias/genética , Humanos , Inflamación/genética , Ratones , Mutación , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Quinasas/metabolismo , Calidad de Vida , Proteína Amiloide A Sérica , Síndrome , Inhibidores del Factor de Necrosis Tumoral
2.
Biosci Biotechnol Biochem ; 84(3): 613-620, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31718523

RESUMEN

Cellulose nanofiber (CN) consumption with exercise could be a potential strategy to control obesity. Here, we studied the effects of CN supplementation and voluntary exercise on obesity and gut microbiota in high-fat diet (HFD)-fed mice. Consumption of CN increased voluntary wheel running activity. CN intake and exercise together suppressed the increase in body weight and fat mass, and improved glucose tolerance. The fecal gut microbiota was analyzed by sequencing 16S ribosomal RNA genes. Principal component analysis revealed a shift in the microbiota composition resulting from exercise, but not from CN supplementation. Erysipelotrichaceae and Rikenellaceae decreased with exercise. Exercise also increased Ruminococcaceae, whereas exercise and CN intake together increased Eubacteriaceae. These two families are butyrate producers. Exercise increased the amount of acetate in the cecum. These results suggest that CN consumption improves exercise performance and exerts anti-obesity effects by modulating the balance of the gut microbiota.


Asunto(s)
Celulosa/farmacología , Dieta Alta en Grasa , Fibras de la Dieta/farmacología , Microbioma Gastrointestinal , Nanofibras , Obesidad/prevención & control , Condicionamiento Físico Animal , Tejido Adiposo/metabolismo , Animales , Peso Corporal , Ciego/metabolismo , Ácidos Grasos Volátiles/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Microbioma Gastrointestinal/genética , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética
3.
Food Res Int ; 182: 114173, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38519188

RESUMEN

Wet-type grinder (WG) is a nanofiber technology used to atomize dietary fiber-rich materials. WG-treated okara (WGO) exhibits high dispersion and viscosity similar to those of viscous soluble dietary fibers. Here, we studied the effect of WGO supplementation on obesity and gut microbiota composition in high-fat diet (HFD)-fed mice. WGO intake suppressed body weight gain and fat accumulation, improved glucose tolerance, lowered cholesterol levels, and prevented HFD-induced decrease in muscle mass. WGO supplementation also led to cecum enlargement, lower pH, and higher butyrate production. The bacterial 16S ribosomal RNA genes (16S rDNA) were sequenced to determine the gut microbiota composition of the fecal samples. Sequencing of bacterial 16S rDNA revealed that WGO treatment increased the abundance of butyrate producer Ruminococcus and reduced the abundances of Rikenellaceae, Streptococcaceae, and Prevotellaceae, which are related to metabolic diseases. Metabolomics analysis of the plasma of WGO- and cellulose-treated mice were conducted using ultra-high-performance liquid chromatography-mass spectrometry. Metabolic pathway analysis revealed that the primary bile acid biosynthesis pathway was significantly positively regulated by WGO intake instead of cellulose. These results demonstrate that WG is useful for improving functional properties of okara to prevent metabolic syndromes, including obesity, diabetes, and dyslipidemia.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Animales , Obesidad/tratamiento farmacológico , Obesidad/prevención & control , Obesidad/metabolismo , Celulosa/farmacología , Butiratos , ADN Ribosómico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA