Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Clin Oral Investig ; 25(10): 5833-5842, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33763712

RESUMEN

OBJECTIVE: To investigate an intracanal disinfection methodology of APNPs (atmosphere pressure nonequilibrium plasmas) or modified APNPs in root canal treatment and evaluate the antimicrobial efficiency against in vitro infected dentinal tubules and in vivo experimental apical periodontitis. MATERIALS AND METHODS: Dentine specimens were centrifugated with Enterococcus faecalis to generate 1-day-old and 3-week-old biofilms, and were treated with 2% chlorhexidine (Chx), APNP or modified APNP for 3 and 10 min (n=4). LIVE/DEAD staining was employed to analyze the ratio of deactivated bacteria. Experimental apical periodontitis in beagles was induced. Root canal therapy with APNPs or modified APNPs was performed and the antimicrobial effect was evaluated by histological and radiographical analyses. RESULTS: APNP deactivated 1-day-old and 3-week-old E. feacalis in dentinal tubules as much as 2% Chx irrigating. Modified APNP significantly deactivated more E. faecalis biofilms in dentinal tubules for 3-min and 10-min treatments, without thermal damage or dentinal destruction being observed. In beagles' apical periodontitis, significantly increased BV/TV and decreased lesion volume of apical bone were found in modified APNP group than 2% Chx irrigation group according to µCT. Fewer inflammatory cells and bacterial residual in dentine were observed in modified APNP-treated apical tissue by histology staining compared with those in the 2% Chx irrigation group. CONCLUSION: The antimicrobial effect of APNP jet irradiation was comparable to that of 2% Chx irrigation. No structural damage in dentine or tissue necrosis at the periapical region was induced upon treatment. The modified APNP demonstrated an increased antimicrobial efficacy compared with 2% Chx irrigation both in vitro and in vivo. CLINICAL RELEVANCE: The modified APNPs can be used as an alternative intracanal disinfection strategy.


Asunto(s)
Cavidad Pulpar , Irrigantes del Conducto Radicular , Animales , Atmósfera , Clorhexidina/farmacología , Dentina , Desinfección , Perros , Enterococcus faecalis , Irrigantes del Conducto Radicular/farmacología , Tratamiento del Conducto Radicular , Hipoclorito de Sodio , Ápice del Diente
2.
Cell Biosci ; 13(1): 75, 2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37088831

RESUMEN

BACKGROUND: Mutations in the signal transducers and activators of transcription 3 (STAT3) gene result in hyper-IgE syndrome(HIES), a rare immunodeficiency that causes abnormalities in immune system, bones and teeth. However, the role of Stat3 in development of dental hard tissues was yet to investigate. METHODS: In this study, a transgenic mouse of conditional knockout of Stat3 in dental mesenchymal cells (Osx-Cre; Stat3fl/fl, Stat3 CKO) was made. The differences of postnatal tooth development between control and Stat3 CKO mice were compared by histology, µCT and scanning electron microscopy. RESULT: Compared with the control, Stat3 CKO mice were presented with remarkable abnormal tooth phenotypes characterized by short root and thin dentin in molars and incisors. The enamel defects were also found on mandibular incisors. showed that Ki67-positive cells significantly decreased in dental mesenchymal of Stat3 CKO mice. In addition, ß-catenin signaling was reduced in Hertwig's epithelial root sheath (HERS) and odontoblasts of Stat3 CKO mice. CONCLUSIONS: Our results suggested that Stat3 played an important role in dental hard tissues development, and Stat3 may regulate dentin and tooth root development through the ß-catenin signaling pathway.

3.
J Huazhong Univ Sci Technolog Med Sci ; 36(1): 137-141, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26838755

RESUMEN

The aim of this study was to investigate the cytotoxicity of modified nonequilibrium plasma with chlorhexidine digluconate (CHX) on human gingival fibroblasts (HGFs), and to evaluate the biosecurity of modified nonequilibrium plasma with 2% CHX as a new method of root canal treatment. Tissue samples taken from human gingiva were primarily cultured and passaged. Cells from passages 3-7 were used. HGFs were treated by modified nonequilibrium plasma with 2% CHX for 0 min (control group), 30 s, 1 min, 1.5 min, 3 min, 5 min, and 10 min, respectively, and then they were incubated for 0, 24, and 48 h. After that, cell counting kit-8 (CCK-8) assay was applied to analyze the cytotoxicity of modified nonequilibrium plasma with 2% CHX on HGFs. There was no significant difference between the 0 h group treated with the modified nonequilibrium plasma for 1 min and the control group (P>0.05). However, there were significant differences between all the other treated groups and the control group (P<0.05). When treated for 1.5 min or shorter, the cell viability was obviously increased; while treated for 3 min or longer, it was obviously reduced. Moreover, when successively cultured for 0, 24, and 48 h, cell viability was decreased at first and then increased in the 3-min-treated and 5-min-treated groups. The modified nonequilibrium plasma with 2% CHX was of no influence on cell viability in 1.5 min treatment, and it could be safely used on root canal treatment.


Asunto(s)
Antiinfecciosos Locales/toxicidad , Clorhexidina/análogos & derivados , Fibroblastos/efectos de los fármacos , Encía/citología , Tratamiento del Conducto Radicular/métodos , Adolescente , Adulto , Antiinfecciosos Locales/efectos adversos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Clorhexidina/efectos adversos , Clorhexidina/toxicidad , Humanos , Plasma/química , Tratamiento del Conducto Radicular/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA