Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Langmuir ; 40(31): 16502-16510, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39039728

RESUMEN

An oral sorbent with high capacity for NH4+ is desirable in lowering the blood urea level and mitigating the dialysis burden for end-stage kidney disease (ESKD) patients. Zirconium phosphate (ZrP) is an amorphous cation ion exchanger with high NH4+ binding capacity as a sorbent material, but its selectivity to remove NH4+ is limited in the presence of other competing ions in water solution. We previously have developed a gas-permeable and hydrophobic perfluorocarbon coating on ZrP, which improves ZrP's NH4+ selectivity. However, the coating preparation procedure, a wet chemistry approach, is complicated and time-consuming, and more importantly, the large amount of usage of acetone poses a concern for the application of ZrP as an oral sorbent. In this study, we developed a solventless coating protocol that effectively coats ZrP with tetraethyl orthosilicate (TEOS) and 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FOTS) via thermal vapor deposition (TVD) in a simplified manner. X-ray photoelectron spectroscopy (XPS) and contact angle measurements verify the two coatings are successfully deposited on the ZrP surface, and the coating condition was optimized based on an in vitro static binding study. The dynamic binding study of competing ions on Na-loaded ZrP with TVD coatings yields a maximum NH4+ removal (∼3.2 mequiv/g), which can be improved to ∼4.7 mequiv/g if H-loaded ZrP under the same coating condition is used in basic stock solutions. More importantly, both materials barely remove Ca2+ and show excellent acid resistance. The significant improvement in the NH4+ binding capacity and selectivity reported here establishes a highly promising surface modification approach to optimize oral sorbents for ESKD patients.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Urea , Circonio , Circonio/química , Urea/química , Membranas Artificiales , Humanos , Adsorción , Insuficiencia Renal/terapia
2.
Langmuir ; 38(12): 3775-3784, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35294197

RESUMEN

Poly(dimethylsiloxane) (PDMS) has been used in a wide range of biomedical devices and medical research due to its biostability, cytocompatibility, gas permeability, and optical properties. Yet, some properties of PDMS create critical limitations, particularly fouling through protein and cell adhesion. In this study, a diallyl-terminated sulfobetaine (SB-diallyl) molecule was synthesized and then directly mixed with a commercial PDMS base (Sylgard 184) and curing agent to produce a zwitterionic group-bearing PDMS (PDMS-SB) hybrid that does not require a complex or an additional surface modification process for the desired end product. In vitro examination of antifouling behavior following exposure to fresh ovine blood showed a significant reduction in platelet deposition for the PDMS-SB hybrid surface compared to that of a PDMS control (p < 0.05, n = 5). The manufacturability via soft lithography using the synthesized polymers was found to be comparable to that for unmodified PDMS. Bonding via O2 plasma treatment was confirmed, and the strength was measured and again found to be comparable to the control. PDMS-SB microfluidic devices were successfully fabricated and showed improved blood compatibility that could reduce channel occlusion due to clot formation relative to PDMS control devices. Further, gas (CO2) transfer through a PDMS-SB hybrid membrane was also tested with a proof-of-concept microchannel device and shown to be comparable to that through the PDMS control.


Asunto(s)
Incrustaciones Biológicas , Dispositivos Laboratorio en un Chip , Animales , Incrustaciones Biológicas/prevención & control , Adhesión Celular , Dimetilpolisiloxanos , Polímeros , Impresión , Ovinos
3.
Biomacromolecules ; 20(7): 2494-2505, 2019 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-31083976

RESUMEN

After more than 22 years of research challenges and innovation, the heart valve tissue engineering paradigm still attracts attention as an approach to overcome limitations which exist with clinically utilized mechanical or bioprosthetic heart valves. Despite encouraging results, delayed translation can be attributed to limited knowledge on the concurrent mechanisms of biomaterial degradation in vivo, host inflammatory response, cell recruitment, and de novo tissue elaboration. This study aimed to reduce this gap by evaluating three alternative levels at which lability could be incorporated into candidate polyurethane materials electroprocessed into a valve scaffold. Specifically, polyester and polycarbonate labile soft segment diols were reacted into thermoplastic elastomeric polyurethane ureas that formed scaffolds where (1) a single polyurethane containing both of the two diols in the polymer backbone was synthesized and processed, (2) two polyurethanes were physically blended, one with exclusively polycarbonate and one with exclusively polyester diols, followed by processing of the blend, and (3) the two polyurethane types were concurrently processed to form individual fiber populations in a valve scaffold. The resulting valve scaffolds were characterized in terms of their mechanics before and after exposure to varying periods of pulsatile flow in an enzymatic (lipase) buffer solution. The results showed that valve scaffolds made from the first type of polymer and processing combination experienced more extensive degradation. This approach, although demonstrated with polyurethane scaffolds, can generally be translated to investigate biomaterial approaches where labile elements are introduced at different structural levels to alter degradation properties while largely preserving the overall chemical composition and initial mechanical behavior.


Asunto(s)
Materiales Biocompatibles/química , Prótesis Valvulares Cardíacas , Ensayo de Materiales , Poliésteres/química , Poliuretanos/química , Animales , Porcinos
4.
Langmuir ; 31(8): 2463-71, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25669307

RESUMEN

Respiratory assist devices seek optimized performance in terms of gas transfer efficiency and thromboresistance to minimize device size and reduce complications associated with inadequate blood biocompatibility. The exchange of gas with blood occurs at the surface of the hollow fiber membranes (HFMs) used in these devices. In this study, three zwitterionic macromolecules were attached to HFM surfaces to putatively improve thromboresistance: (1) carboxyl-functionalized zwitterionic phosphorylcholine (PC) and (2) sulfobetaine (SB) macromolecules (mPC or mSB-COOH) prepared by a simple thiol-ene radical polymerization and (3) a low-molecular weight sulfobetaine (SB)-co-methacrylic acid (MA) block copolymer (SBMAb-COOH) prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization. Each macromolecule type was covalently immobilized on an aminated commercial HFM (Celg-A) by a condensation reaction, and HFM surface composition changes were analyzed by X-ray photoelectron spectroscopy. Thrombotic deposition on the HFMs was investigated after contact with ovine blood in vitro. The removal of CO2 by the HFMs was also evaluated using a model respiratory assistance device. The HFMs conjugated with zwitterionic macromolecules (Celg-mPC, Celg-mSB, and Celg-SBMAb) showed expected increases in phosphorus or sulfur surface content. Celg-mPC and Celg-SBMAb experienced rates of platelet deposition significantly lower than those of unmodified (Celg-A, >95% reduction) and heparin-coated (>88% reduction) control HFMs. Smaller reductions were seen with Celg-mSB. The CO2 removal rate for Celg-SBMAb HFMs remained comparable to that of Celg-A. In contrast, the rate of removal of CO2 for heparin-coated HFMs was significantly reduced. The results demonstrate a promising approach to modifying HFMs using zwitterionic macromolecules for artificial lung devices with improved thromboresistance without degradation of gas transfer.


Asunto(s)
Sustancias Macromoleculares/química , Membranas Artificiales , Estructura Molecular , Tamaño de la Partícula , Porosidad , Propiedades de Superficie
5.
Biomacromolecules ; 16(5): 1622-33, 2015 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-25891476

RESUMEN

Although the thiol click reaction is an attractive tool for postpolymerization modification of thiolmers, thiol groups are easily oxidized, limiting the potential for covalent immobilization of bioactive molecules. In this study, a series of biodegradable polyurethane elastomers incorporating stable cyclic disulfide groups was developed and characterized. These poly(ester urethane)urea (PEUU-SS) polymers were based on polycaprolactone diol (PCL), oxidized dl-dithiothreitol (O-DTT), lysine diisocyanate (LDI), or butyl diisocyanate (BDI), with chain extension by putrescine. The ratio of O-DTT:PCL was altered to investigate different levels of potential functionalization. PEG acrylate was employed to study the mechanism and availability of both bulk and surface click modification of PEUU-SS polymers. All synthesized PEUU-SS polymers were elastic with breaking strengths of 38-45 MPa, while the PEUU-SS(LDI) polymers were more amorphous, possessing lower moduli and relatively small permanent deformations versus PEUU-SS(BDI) polymers. Variable bulk click modification of PEUU-SS(LDI) polymers was achieved by controlling the amount of reduction reagent, and rapid reaction rates occurred using a one-pot, two-step process. Likewise, surface click reaction could be carried out quickly under mild, aqueous conditions. Furthermore, a maleimide-modified affinity peptide (TPS) was successfully clicked on the surface of an electrospun PEUU-SS(BDI) fibrous sheet, which improved endothelial progenitor cell adhesion versus corresponding unmodified films. The cyclic disulfide containing biodegradable polyurethanes described provide an option for cardiovascular and other soft tissue regenerative medicine applications where a temporary, elastic scaffold with designed biofunctionality from a relatively simple click chemistry approach is desired.


Asunto(s)
Plásticos Biodegradables/química , Poliuretanos/química , Compuestos de Sulfhidrilo/química , Disulfuros/química , Elastómeros/química , Urea/química
6.
J Mech Behav Biomed Mater ; 157: 106638, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38996626

RESUMEN

Vascular graft thrombosis is a long-standing clinical problem. A myriad of efforts have been devoted to reducing thrombus formation following bypass surgery. Researchers have primarily taken a chemical approach to engineer and modify surfaces, seeking to make them more suitable for blood contacting applications. Using mechanical forces and surface topology to prevent thrombus formation has recently gained more attention. In this study, we have designed a bilayered porous vascular graft capable of repelling platelets and destabilizing absorbed protein layers from the luminal surface. During systole, fluid penetrates through the graft wall and is subsequently ejected from the wall into the luminal space (Luminal Reversal Flow - LRF), pushing platelets away from the surface during diastole. In-vitro hemocompatibility tests were conducted to compare platelet deposition in high LRF grafts with low LRF grafts. Graft material properties were determined and utilized in a porohyperelastic (PHE) finite element model to computationally predict the LRF generation in each graft type. Hemocompatibility testing showed significantly lower platelet deposition values in high versus low LRF generating grafts (median±IQR = 5,708 ± 987 and 23,039 ± 3,310 platelets per mm2, respectively, p=0.032). SEM imaging of the luminal surface of both graft types confirmed the quantitative blood test results. The computational simulations of high and low LRF generating grafts resulted in LRF values of -10.06 µm/s and -2.87 µm/s, respectively. These analyses show that a 250% increase in LRF is associated with a 75.2% decrease in platelet deposition. PHE vascular grafts with high LRF have the potential to improve anti-thrombogenicity and reduce thrombus-related post-procedure complications. Additional research is required to overcome the limitations of current graft fabrication technologies that further enhance LRF generation.


Asunto(s)
Prótesis Vascular , Ensayo de Materiales , Porosidad , Elasticidad , Análisis de Elementos Finitos , Humanos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Plaquetas , Trombosis
7.
J Biomed Mater Res A ; 112(1): 99-109, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37929658

RESUMEN

Developing an ambulatory assist lung (AAL) for patients who need continuous extracorporeal membrane oxygenation has been associated with several design objectives, including the design of compact components, optimization of gas transfer efficiency, and reduced thrombogenicity. In an effort to address thrombogenicity concerns with currently utilized component biomaterials, a low molecular weight water soluble siloxane-functionalized zwitterionic sulfobetaine (SB-Si) block copolymer was coated on a full-scale AAL device set via a one pot aqueous circulation coating. All device parts including hollow fiber bundle, housing, tubing and cannular were successfully coated with increasing atomic compositions of the SB block copolymer and the coated surfaces showed a significant reduction of platelet deposition while gas exchange performance was sustained. However, water solubility of the SB-Si was unstable, and the coating method, including oxygen plasma pretreatment on the surfaces were considered inconsistent with the objective of developing a simple aqueous coating. Addressing these weaknesses, SB block copolymers were synthesized bearing epoxy or epoxy-silane groups with improved water solubility (SB-EP & SB-EP-Si) and no requirement for surface pretreatment (SB-EP-Si). An SB-EP-Si triblock copolymer showed the most robust coating capacity and stability without prior pretreatment to represent a simple aqueous circulation coating on an assembled full-scale AAL device.


Asunto(s)
Plaquetas , Silanos , Humanos , Polímeros , Pulmón , Agua
8.
Nat Commun ; 15(1): 1123, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321028

RESUMEN

Shape-memory materials hold great potential to impart medical devices with functionalities useful during implantation, locomotion, drug delivery, and removal. However, their clinical translation is limited by a lack of non-invasive and precise methods to trigger and control the shape recovery, especially for devices implanted in deep tissues. In this study, the application of image-guided high-intensity focused ultrasound (HIFU) heating is tested. Magnetic resonance-guided HIFU triggered shape-recovery of a device made of polyurethane urea while monitoring its temperature by magnetic resonance thermometry. Deformation of the polyurethane urea in a live canine bladder (5 cm deep) is achieved with 8 seconds of ultrasound-guided HIFU with millimeter resolution energy focus. Tissue sections show no hyperthermic tissue injury. A conceptual application in ureteral stent shape-recovery reduces removal resistance. In conclusion, image-guided HIFU demonstrates deep energy penetration, safety and speed.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación , Poliuretanos , Animales , Perros , Calefacción , Imagen por Resonancia Magnética/métodos , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos , Urea
9.
Langmuir ; 29(26): 8320-7, 2013 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-23705967

RESUMEN

Siloxane functionalized phosphorylcholine (PC) or sulfobetaine (SB) macromolecules (PCSSi or SBSSi) were synthesized to act as surface modifying agents for degradable metallic surfaces to improve acute blood compatibility and slow initial corrosion rates. The macromolecules were synthesized using a thiol-ene radical photopolymerization technique and then utilized to modify magnesium (Mg) alloy (AZ31) surfaces via an anhydrous phase deposition of the silane functional groups. X-ray photoelectron spectroscopy surface analysis results indicated successful surface modification based on increased nitrogen and phosphorus or sulfur composition on the modified surfaces relative to unmodified AZ31. In vitro acute thrombogenicity assessment after ovine blood contact with the PCSSi and SBSSi modified surfaces showed a significant decrease in platelet deposition and bulk phase platelet activation compared with the control alloy surfaces. Potentiodynamic polarization and electrochemical impedance spectroscopy data obtained from electrochemical corrosion testing demonstrated increased corrosion resistance for PCSSi- and SBSSi-modified AZ31 versus unmodified surfaces. The developed coating technique using PCSSi or SBSSi showed promise in acutely reducing both the corrosion and thrombotic processes, which would be attractive for application to blood contacting devices, such as vascular stents, made from degradable Mg alloys.


Asunto(s)
Aleaciones/química , Betaína/análogos & derivados , Magnesio/química , Fosforilcolina/química , Aleaciones/farmacología , Animales , Betaína/química , Materiales Biocompatibles , Plaquetas/citología , Plaquetas/efectos de los fármacos , Espectroscopía de Fotoelectrones , Activación Plaquetaria/efectos de los fármacos , Ovinos , Oveja Doméstica , Siloxanos/química , Propiedades de Superficie , Trombosis/prevención & control
10.
Biomacromolecules ; 13(11): 3686-94, 2012 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-23035885

RESUMEN

Biodegradable polymers with high elasticity, low thrombogenicity, and drug loading capacity continue to be pursued for vascular engineering applications, including vascular grafts and stents. A biodegradable elastomeric polyurethane was designed as a candidate material for use as a drug-eluting stent coating, such that it was nonthrombogenic and could provide antiproliferative drug release to inhibit smooth muscle cell proliferation. A phosphorylcholine containing poly(ester urethane) urea (PEUU-PC) was synthesized by grafting aminated phosphorylcholine onto backbone carboxyl groups of a polyurethane (PEUU-COOH) synthesized from a soft segment blend of polycaprolactone and dimethylolpropionic acid, a hard segment of diisocyanatobutane and a putrescine chain extender. Poly(ester urethane) urea (PEUU) from a soft segment of polycaprolactone alone was employed as a control material. All of the synthesized polyurethanes showed high distensibility (>600%) and tensile strengths in the 20-35 MPa range. PEUU-PC experienced greater degradation than PEUU or PEUU-COOH in either a saline or lipase enzyme solution. PEUU-PC also exhibited markedly inhibited ovine blood platelet deposition compared with PEUU-COOH and PEUU. Paclitaxel loaded in all of the polymers during solvent casting continued to release for 5 d after a burst release in a 10% ethanol/PBS solution, which was utilized to increase the solubility of the releasate. Rat smooth muscle cell proliferation was significantly inhibited in 1 wk cell culture when releasate from the paclitaxel-loaded films was present. Based on these results, the synthesized PEUU-PC has promising functionality for use as a nonthrombogenic, drug eluting coating on metallic vascular stents and grafts.


Asunto(s)
Stents Liberadores de Fármacos , Paclitaxel/administración & dosificación , Fosforilcolina/química , Poliésteres/química , Injerto Vascular , Animales , Materiales Biocompatibles , Plaquetas , Proliferación Celular , Portadores de Fármacos , Elasticidad , Elastómeros/química , Hidroxiácidos/química , Miocitos del Músculo Liso/fisiología , Paclitaxel/farmacocinética , Polímeros , Propionatos/química , Ratas , Ovinos/sangre , Resistencia a la Tracción
11.
Langmuir ; 27(17): 11106-10, 2011 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-21800880

RESUMEN

These studies demonstrate a new approach of producing multifunctionalized coatings on poly(tetrafluoroethylene) (PTFE) surfaces by covalent attachments of multilayers (CAM) of heparin (HP) and poly(ethylene glycol) (PEG). This process can be universally applied to other covalently bonded species and was facilitated by microwave plasma reactions in the presence of maleic anhydride which, upon ring-opening and hydrolysis, provided covalent attachment of COOH groups to PTFE. These studies showed that alternating layers of PEG and HP can be covalently attached to COOH-PTFE surfaces, and the volume concentration and surface density of PEG and HP on the PTFE surface achieved by the CAM were 7.02-6.04 × 10(-3) g/cm(3) (2.1-1.8 × 10(-7) g/cm(2)) and 9.3-8.7 × 10(-3) g/cm(3) (2.8-2.6 × 10(-7) g/cm(2)), respectively. The CAM process may serve numerous applications when the covalent modification of inert polymeric substrates is required and particularly where the presence of bioactive species for biocompatibility enhancement is desirable.


Asunto(s)
Membranas Artificiales , Politetrafluoroetileno/química , Estructura Molecular , Tamaño de la Partícula , Propiedades de Superficie
12.
Artif Organs ; 35(6): 602-13, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21463346

RESUMEN

The PediaFlow pediatric ventricular assist device (VAD) is a magnetically levitated turbodynamic pump under development for circulatory support of small children with a targeted flow rate range of 0.3-1.5 L/min. As the design of this device is refined, ensuring high levels of blood biocompatibility is essential. In this study, we characterized platelet activation during the implantation and operation of a second generation prototype of the PediaFlow VAD (PF2) and also performed a series of surgical sham studies to examine purely surgical effects on platelet activation. In addition, a newly available monoclonal antibody was characterized and shown to be capable of quantifying ovine platelet activation. The PF2 was implanted in three chronic ovine experiments of 17, 30, and 70 days, while surgical sham procedures were performed in five ovines with 30-day monitoring. Blood biocompatibility in terms of circulating activated platelets was measured by flow cytometric assays with and without exogenous agonist stimulation. Platelet activation following sham surgery returned to baseline in approximately 2 weeks. Platelets in PF2-implanted ovines returned to baseline activation levels in all three animals and showed an ability to respond to agonist stimulation. Late-term platelet activation was observed in one animal corresponding with unexpected pump stoppages related to a manufacturing defect in the percutaneous cable. The results demonstrated encouraging platelet biocompatibility for the PF2 in that basal platelet activation was achieved early in the pump implant period. Furthermore, this first characterization of the effect of a major cardiothoracic procedure on temporal ovine platelet activation provides comparative data for future cardiovascular device evaluation in the ovine model.


Asunto(s)
Materiales Biocompatibles/metabolismo , Corazón Auxiliar , Activación Plaquetaria , Animales , Niño , Diseño de Equipo , Humanos , Ensayo de Materiales , Implantación de Prótesis , Ovinos
13.
Artif Organs ; 34(5): 439-42, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20633159

RESUMEN

Hollow fiber membrane (HFM)-based artificial lungs can require a large blood-contacting membrane surface area to provide adequate gas exchange. However, such a large surface area presents significant challenges to hemocompatibility. One method to improve carbon dioxide (CO(2)) transfer efficiency might be to immobilize carbonic anhydrase (CA) onto the surface of conventional HFMs. By catalyzing the dehydration of bicarbonate in blood, CA has been shown to facilitate diffusion of CO(2) toward the fiber membranes. This study evaluated the impact of surface modifying a commercially available microporous HFM-based artificial lung on fiber blood biocompatibility. A commercial poly(propylene) Celgard HFM surface was coated with a siloxane, grafted with amine groups, and then attached with CA which has been shown to facilitate diffusion of CO(2) toward the fiber membranes. Results following acute ovine blood contact indicated no significant reduction in platelet deposition or activation with the siloxane coating or the siloxane coating with grafted amines relative to base HFMs. However, HFMs with attached CA showed a significant reduction in both platelet deposition and activation compared with all other fiber types. These findings, along with the improved CO(2) transfer observed in CA modified fibers, suggest that its incorporation into HFM design may potentiate the design of a smaller, more biocompatible HFM-based artificial lung.


Asunto(s)
Anhidrasas Carbónicas/metabolismo , Enzimas Inmovilizadas/metabolismo , Máquina Corazón-Pulmón , Ensayo de Materiales , Membranas Artificiales , Animales , Dióxido de Carbono/metabolismo , Ovinos , Propiedades de Superficie
14.
J Mater Chem B ; 8(36): 8305-8314, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32785384

RESUMEN

Polydimethylsiloxane (PDMS) is commonly used in medical devices because it is non-toxic and stable against oxidative stress. Relatively high blood platelet adhesion and the need for chemical crosslinking through curing, however, limit its utility. In this research, a biostable PDMS-based polyurethane-urea bearing zwitterion sulfobetaine (PDMS-SB-UU) was synthesized for potential use in the fabrication or coating of blood-contacting devices, such as a conduits, artificial lungs, and microfluidic devices. The chemical structure and physical properties of synthesized PDMS-SB-UU were confirmed by 1H-nuclear magnetic resonance (1H-NMR), X-ray diffraction (XRD), and uniaxial stress-strain curve. In vitro stability of PDMS-SB-UU was confirmed against lipase and 30% H2O2 for 8 weeks, and PDMS-SB-UU demonstrated significantly higher resistance to fibrinogen adsorption and platelet deposition compared to control PDMS. Moreover, PDMS-SB-UU showed a lack of hemolysis and cytotoxicity with whole ovine blood and rat vascular smooth muscle cells (rSMCs), respectively. The PDMS-SB-UU was successfully processed into small-diameter (0.80 ± 0.05 mm) conduits by electrospinning and coated onto PDMS- and polypropylene-based blood-contacting biomaterials due to its unique physicochemical characteristics from its soft- and hard- segments.


Asunto(s)
Incrustaciones Biológicas/prevención & control , Materiales Biocompatibles Revestidos/química , Dimetilpolisiloxanos/química , Poliuretanos/química , Compuestos de Amonio Cuaternario/química , Ácidos Sulfónicos/química , Adsorción , Animales , Plaquetas/efectos de los fármacos , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/toxicidad , Dimetilpolisiloxanos/síntesis química , Dimetilpolisiloxanos/toxicidad , Fibrinógeno/química , Fibrinógeno/metabolismo , Hemólisis/efectos de los fármacos , Adhesividad Plaquetaria/efectos de los fármacos , Poliuretanos/síntesis química , Poliuretanos/toxicidad , Compuestos de Amonio Cuaternario/síntesis química , Compuestos de Amonio Cuaternario/toxicidad , Ratas , Ovinos , Ácidos Sulfónicos/síntesis química , Ácidos Sulfónicos/toxicidad
15.
Biomaterials ; 192: 226-234, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30458358

RESUMEN

The inner surfaces of arteries and veins are naturally anti-thrombogenic, whereas synthetic materials placed in blood contact commonly experience thrombotic deposition that can lead to device failure or clinical complications. Presented here is a bioinspired strategy for self-cleaning anti-thrombotic surfaces using actuating surface topography. As a first test, wrinkled polydimethylsiloxane planar surfaces are constructed that can repeatedly transition between smooth and wrinkled states. When placed in contact with blood, these surfaces display markedly less platelet deposition than control samples. Second, for the specific application of prosthetic vascular grafts, the potential of using pulse pressure, i.e. the continual variation of blood pressure between systole and diastole, to drive topographic actuation was investigated. Soft cylindrical tubes with a luminal surface that transitioned between smooth and wrinkled states were constructed. Upon exposure to blood under continual pressure pulsation, these cylindrical tubes also showed reduced platelet deposition versus control samples under the same fluctuating pressure conditions. In both planar and cylindrical cases, significant reductions in thrombotic deposition were observed, even when the wrinkles had wavelengths of several tens of µm, far larger than individual platelets. We speculate that the observed thrombo-resistance behavior is attributable to a biofilm delamination process in which the bending energy within the biofilm overcomes interfacial adhesion. This novel strategy to reduce thrombotic deposition may be applicable to several types of medical devices placed into the circulatory system, particularly vascular grafts.


Asunto(s)
Materiales Biocompatibles/química , Prótesis Vascular/efectos adversos , Dimetilpolisiloxanos/química , Trombosis/etiología , Diseño de Equipo , Humanos , Adhesividad Plaquetaria , Flujo Pulsátil , Propiedades de Superficie , Trombosis/prevención & control
16.
J Tissue Eng Regen Med ; 12(6): 1374-1388, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29677404

RESUMEN

The challenge of developing scaffolds to reconstruct critical-sized calvarial defects without the addition of high levels of exogenous growth factor remains relevant. Both osteogenic regenerative efficacy and suitable mechanical properties for the temporary scaffold system are of importance. In this study, a Mg alloy mesh reinforced polymer/demineralized bone matrix (DBM) hybrid scaffold was designed where the hybrid scaffold was fabricated by a concurrent electrospinning/electrospraying of poly(lactic-co-glycolic acid) (PLGA) polymer and DBM suspended in hyaluronic acid (HA). The Mg alloy mesh significantly increased the flexural strength and modulus of PLGA/DBM hybrid scaffold. In vitro results demonstrated that the Mg alloy mesh reinforced PLGA/DBM hybrid scaffold (Mg-PLGA@HA&DBM) exhibited a stronger ability to promote the proliferation of bone marrow stem cells (BMSCs) and induce BMSC osteogenic differentiation compared with control scaffolding materials lacking critical components. In vivo osteogenesis studies were performed in a rat critical-sized calvarial defect model and incorporated a variety of histological stains and immunohistochemical staining of osteocalcin. At 12 weeks, the rat model data showed that the degree of bone repair for the Mg-PLGA@HA&DBM scaffold was significantly greater than for those scaffolds lacking one or more of the principal components. Although complete defect filling was not achieved, the improved mechanical properties, promotion of BMSC proliferation and induction of BMSC osteogenic differentiation, and improved promotion of bone repair in the rat critical-sized calvarial defect model make Mg alloy mesh reinforced PLGA/DBM hybrid scaffold an attractive option for the repair of critical-sized bone defects where the addition of exogenous isolated growth factors is not employed.


Asunto(s)
Aleaciones/farmacología , Matriz Extracelular/química , Magnesio/farmacología , Cráneo/patología , Andamios del Tejido/química , Fosfatasa Alcalina/metabolismo , Animales , Matriz Ósea/química , Calcio/metabolismo , Femenino , Osteogénesis/efectos de los fármacos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Ratas Sprague-Dawley
17.
J Biomed Mater Res B Appl Biomater ; 106(7): 2681-2692, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29424964

RESUMEN

Respiratory assist devices, that utilize ∼2 m2 of hollow fiber membranes (HFMs) to achieve desired gas transfer rates, have been limited in their adoption due to such blood biocompatibility limitations. This study reports two techniques for the functionalization and subsequent conjugation of zwitterionic sulfobetaine (SB) block copolymers to polymethylpentene (PMP) HFM surfaces with the intention of reducing thrombus formation in respiratory assist devices. Amine or hydroxyl functionalization of PMP HFMs (PMP-A or PMP-H) was accomplished using plasma-enhanced chemical vapor deposition. The generated functional groups were conjugated to low molecular weight SB block copolymers with N-hydroxysuccinimide ester or siloxane groups (SBNHS or SBNHSi) that were synthesized using reversible addition fragmentation chain transfer polymerization. The modified HFMs (PMP-A-SBNHS or PMP-H-SBNHSi) showed 80-95% reduction in platelet deposition from whole ovine blood, stability under the fluid shear of anticipated operating conditions, and uninhibited gas exchange performance relative to non-modified HFMs (PMP-C). Additionally, the functionalization and SBNHSi conjugation technique was shown to reduce platelet deposition on polycarbonate and poly(vinyl chloride), two other materials commonly found in extracorporeal circuits. The observed thromboresistance and stability of the SB modified surfaces, without degradation of HFM gas transfer performance, indicate that this approach is promising for longer term pre-clinical testing in respiratory assist devices and may ultimately allow for the reduction of anticoagulation levels in patients being supported for extended periods. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2681-2692, 2018.


Asunto(s)
Betaína/análogos & derivados , Plaquetas/metabolismo , Materiales Biocompatibles Revestidos/química , Membranas Artificiales , Adhesividad Plaquetaria , Animales , Betaína/química , Cemento de Policarboxilato/química , Cloruro de Polivinilo/química , Ovinos
18.
PLoS One ; 13(10): e0205611, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30304058

RESUMEN

Polymeric coatings can provide temporary stability to bioresorbable metallic stents at the initial stage of deployment by alleviating rapid degradation and providing better interaction with surrounding vasculature. To understand this interfacing biocompatibility, this study explored the endothelial-cytocompatibility of polymer-coated magnesium (Mg) alloys under static and dynamic conditions compared to that of non-coated Mg alloy surfaces. Poly (carbonate urethane) urea (PCUU) and poly (lactic-co-glycolic acid) (PLGA) were coated on Mg alloys (WE43, AZ31, ZWEKL, ZWEKC) and 316L stainless steel (316L SS, control sample), which were embedded into a microfluidic device to simulate a vascular environment with dynamic flow. The results from attachment and viability tests showed that more cells were attached on the polymer-coated Mg alloys than on non-coated Mg alloys in both static and dynamic conditions. In particular, the attachment and viability on PCUU-coated surfaces were significantly higher than that of PLGA-coated surfaces of WE43 and ZWEKC in both static and dynamic conditions, and of AZ31 in dynamic conditions (P<0.05). The elementary distribution map showed that there were relatively higher Carbon weight percentages and lower Mg weight percentages on PCUU-coated alloys than PLGA-coated alloys. Various levels of pittings were observed underneath the polymer coatings, and the pittings were more severe on the surface of Mg alloys that corroded rapidly. Polymer coatings are recommended to be applied on Mg alloys with relatively low corrosion rates, or after pre-stabilizing the substrate. PCUU-coating has more selective potential to enhance the biocompatibility and mitigate the endothelium damage of Mg alloy stenting.


Asunto(s)
Implantes Absorbibles , Materiales Biocompatibles Revestidos , Células Endoteliales , Magnesio , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Poliuretanos , Aleaciones , Animales , Encéfalo , Adhesión Celular , Supervivencia Celular , Células Endoteliales/fisiología , Dispositivos Laboratorio en un Chip , Ratones , Modelos Cardiovasculares , Acero Inoxidable , Stents , Andamios del Tejido
19.
ACS Appl Mater Interfaces ; 8(23): 14442-52, 2016 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27224957

RESUMEN

Surface coimmobilization modifications of blood-contacting devices with both antithrombogenic moieties and endothelium-inducing biomolecules may create a synergistic effect to improve their performance. However, it is difficult to perform covalent dual-functionalization with both biomolecules on the surface of normally used synthetic polymeric substrates. Herein, we developed and characterized an orthogonally functionalizable polymer, biodegradable elastic poly(ester urethane)urea with disulfide and amino groups (PUSN), which was further fabricated into electropun fibrous scaffolds and surface modified with heparin and endothelial progenitor cells (EPC) recruiting peptide (TPS). The modification effects were assessed through platelet adhesion, EPC, and HUVEC proliferation. Results showed the dual modified PUSN scaffolds demonstrated a synergistic effect of reduced platelet deposition and improved EPC proliferation in vitro study, and demonstrated their potential application in small diameter vascular regeneration.


Asunto(s)
Prótesis Vascular , Materiales Biocompatibles Revestidos/química , Péptidos/metabolismo , Poliuretanos/química , Adhesión Celular , Endotelio/citología , Heparina/metabolismo , Humanos , Péptidos/química , Adhesividad Plaquetaria , Andamios del Tejido/química
20.
Colloids Surf B Biointerfaces ; 144: 170-179, 2016 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-27085049

RESUMEN

Vascular stent design continues to evolve to further improve the efficacy and minimize the risks associated with these devices. Drug-eluting coatings have been widely adopted and, more recently, biodegradable stents have been the focus of extensive evaluation. In this report, biodegradable elastomeric polyurethanes were synthesized and applied as drug-eluting coatings for a relatively new class of degradable vascular stents based on Mg. The dynamic degradation behavior, hemocompatibility and drug release were investigated for poly(carbonate urethane) urea (PCUU) and poly(ester urethane) urea (PEUU) coated magnesium alloy (AZ31) stents. Poly(lactic-co-glycolic acid) (PLGA) coated and bare stents were employed as control groups. The PCUU coating effectively slowed the Mg alloy corrosion in dynamic degradation testing compared to PEUU-coated, PLGA-coated and bare Mg alloy stents. This was confirmed by electron microscopy, energy-dispersive x-ray spectroscopy and magnesium ion release experiments. PCUU-coating of AZ31 was also associated with significantly reduced platelet adhesion in acute blood contact testing. Rat vascular smooth muscle cell (rSMC) proliferation was successfully inhibited when paclitaxel was released from pre-loaded PCUU coatings. The corrosion retardation, low thrombogenicity, drug loading capacity, and high elasticity make PCUU an attractive option for drug eluting coating on biodegradable metallic cardiovascular stents.


Asunto(s)
Enfermedades Cardiovasculares/terapia , Materiales Biocompatibles Revestidos/farmacología , Stents Liberadores de Fármacos , Magnesio/farmacología , Polímeros/farmacología , Aleaciones , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Elastómeros , Iones , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Ratas , Ovinos , Propiedades de Superficie , Microtomografía por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA