Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 6: 23509, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-27001150

RESUMEN

Biological armors such as mollusk shells have long been recognized and studied for their values in inspiring novel designs of engineering materials with higher toughness and strength. However, no material is invincible and biological armors also have their rivals. In this paper, our attention is focused on the teeth of black carp (Mylopharyngodon piceus) which is a predator of shelled mollusks like snails and mussels. Nanoscratching test on the enameloid, the outermost layer of the teeth, indicates that the natural occlusal surface (OS) has much higher wear resistance compared to the other sections. Subsequent X-ray diffraction analysis reveals that the hydroxyapatite (HAp) crystallites in the vicinity of OS possess c-axis preferential orientation. The superior wear resistance of black carp teeth is attributed to the c-axis preferential orientation of HAp near the OS since the (001) surface of HAp crystal, which is perpendicular to the c-axis, exhibits much better wear resistance compared to the other surfaces as demonstrated by the molecular dynamics simulation. Our results not only shed light on the origin of the good wear resistance exhibited by the black carp teeth but are of great value to the design of engineering materials with better abrasion resistance.


Asunto(s)
Carpas/fisiología , Durapatita/química , Diente/química , Animales , Difracción de Rayos X
2.
Adv Mater ; 27(8): 1402-7, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25529120

RESUMEN

Core-shell nanoparticles (NPs) with lipid shells and varying water content and rigidity but with the same chemical composition, size, and surface properties are assembled using a microfluidic platform. Rigidity can dramatically alter the cellular uptake efficiency, with more-rigid NPs able to pass more easily through cell membranes. The mechanism accounting for this rigidity-dependent cellular uptake is revealed through atomistic-level simulations.


Asunto(s)
Ácido Láctico/química , Ácido Láctico/metabolismo , Lípidos/química , Fenómenos Mecánicos , Nanopartículas , Ácido Poliglicólico/química , Ácido Poliglicólico/metabolismo , Transporte Biológico , Células HeLa , Humanos , Conformación Molecular , Simulación de Dinámica Molecular , Copolímero de Ácido Poliláctico-Ácido Poliglicólico
3.
Lab Chip ; 14(10): 1673-7, 2014 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-24675980

RESUMEN

This report describes a straightforward but robust tubing method for connecting polydimethylsiloxane (PDMS) microfluidic devices to external equipment. The interconnection is irreversible and can sustain a pressure of up to 4.5 MPa that is characterized experimentally and theoretically. To demonstrate applications of this high-pressure tubing technique, we fabricate a semicircular microfluidic channel to implement a high-throughput, size-controlled synthesis of poly(lactic-co-glycolic acid) (PLGA) nanoparticles ranging from 55 to 135 nm in diameter. This microfluidic device allows for a total flow rate of 410 mL h(-1), resulting in enhanced convective mixing which can be utilized to precipitate small size nanoparticles with a good dispersion. We expect that this tubing technique would be widely used in microfluidic chips for nanoparticle synthesis, cell manipulation, and potentially nanofluidic applications.


Asunto(s)
Ácido Láctico/química , Técnicas Analíticas Microfluídicas/instrumentación , Nanopartículas/química , Ácido Poliglicólico/química , Dimetilpolisiloxanos/química , Diseño de Equipo , Tamaño de la Partícula , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Presión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA