Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Physiol ; 234(11): 20377-20391, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30963561

RESUMEN

Periodontitis is characterized by the chronic inflammation and destruction of tooth-supporting tissues. Periodontal ligament stem cell (PDLSC) is the mesenchymal stem cell (MSC) population isolated from periodontal ligament, which is the key tissue for regeneration of periodontal tissues. Although transplantation of PDLSCs is proposed as novel regenerative therapy, limited information is available, regarding the characteristic change of PDLSCs during ex vivo expansion. In this study, we encountered morphological change of PDLSCs during standard cell culture and aimed to investigate the change of PDLSCs in stem cell characteristics and to search for the culture condition to maintain stem cell properties. Characteristics of PDLSCs were examined using in vitro osteoblast and adipocyte differentiation. Myofibroblast differentiation was confirmed using immunohistochemistry and collagen gel contraction assay. Replicative senescence was examined by ß-gal staining. PDLSCs changed their morphology from spindle to flat and wide during ex vivo expansion. After the morphological change, PDLSCs showed several features of myofibroblast including extensive stress fiber formation, contraction activity, and myofibroblast marker expression. Upon the morphological change, osteoblastic and adipocyte differentiation capacity were reduced and expression of stem cell-related genes were decreased. ß-Gal staining was not always correlated with the morphological change of PDLSCs. Moreover, exogenous addition of bFGF and PDGF-BB served to maintain spindle shape and osteoblastic differentiation potential of PDLSCs. This study demonstrates that spontaneous differentiation of PDLSCs during ex vivo expansion and may provide the important information of cell culture condition of PDLSCs for clinical use.


Asunto(s)
Diferenciación Celular/fisiología , Miofibroblastos/citología , Ligamento Periodontal/citología , Células Madre/citología , Adolescente , Adulto , Proliferación Celular/fisiología , Células Cultivadas , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/citología , Osteoblastos/citología , Osteoblastos/metabolismo , Regeneración/fisiología , Trasplante de Células Madre/métodos , Adulto Joven
2.
Int J Mol Sci ; 20(1)2019 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-30621073

RESUMEN

Periodontal disease is chronic inflammation that leads to the destruction of tooth-supporting periodontal tissues. We devised a novel method ("cell transfer technology") to transfer cells onto a scaffold surface and reported the potential of the technique for regenerative medicine. The aim of this study is to examine the efficacy of this technique in periodontal regeneration and the fate of transplanted cells. Human periodontal ligament stem cells (PDLSCs) were transferred to decellularized amniotic membrane and transplanted into periodontal defects in rats. Regeneration of tissues was examined by microcomputed tomography and histological observation. The fate of transplanted PDLSCs was traced using PKH26 and human Alu sequence detection by PCR. Imaging showed more bone in PDLSC-transplanted defects than those in control (amnion only). Histological examination confirmed the enhanced periodontal tissue formation in PDLSC defects. New formation of cementum, periodontal ligament, and bone were prominently observed in PDLSC defects. PKH26-labeled PDLSCs were found at limited areas in regenerated periodontal tissues. Human Alu sequence detection revealed that the level of Alu sequence was not increased, but rather decreased. This study describes a novel stem cell transplantation strategy for periodontal disease using the cell transfer technology and offers new insight for cell-based periodontal regeneration.


Asunto(s)
Ligamento Periodontal/cirugía , Ligamento Periodontal/trasplante , Trasplante de Células Madre , Células Madre/citología , Adolescente , Adulto , Amnios/citología , Animales , Humanos , Ligamento Periodontal/diagnóstico por imagen , Ligamento Periodontal/patología , Ratas , Regeneración , Microtomografía por Rayos X , Adulto Joven
3.
Tissue Eng Part A ; 23(9-10): 367-377, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28027709

RESUMEN

Periodontal disease is one of the most common infectious diseases in adults and is characterized by the destruction of tooth-supporting tissues. Mesenchymal stem cells (MSCs) comprise the mesoderm-originating stem cell population, which has been studied and used for cell therapy. However, because of the lower rate of cell survival after MSC transplantation in various disease models, paracrine functions of MSCs have been receiving increased attention as a regenerative mechanism. The aim of this study was to investigate the regenerative potential of transplanted conditioned medium (CM) obtained from cultured periodontal ligament stem cells (PDLSCs), the adult stem cell population in tooth-supporting tissues, using a rat periodontal defect model. Cell-free CM was collected from PDLSCs and fibroblasts, using ultrafiltration and transplanted into surgically created periodontal defects. Protein content of CM was examined by antibody arrays. Formation of new periodontal tissues was analyzed using microcomputed tomography and histological sections. PDLSC-CM transplantation enhanced periodontal tissue regeneration in a concentration-dependent manner, whereas fibroblast-CM did not show any regenerative function. Proteomic analysis revealed that extracellular matrix proteins, enzymes, angiogenic factors, growth factors and cytokines were contained in PDLSC-CM. Furthermore, PDLSC-CM transplantation resulted in the decreased mRNA level of tumor necrosis factor-α (TNF-α) in healing periodontal tissues. In addition, we found that PDLSC-CM suppressed the mRNA level of TNF-α in the monocyte/macrophage cell line, RAW cells, stimulated with IFN-γ. Our findings suggested that PDLSC-CM enhanced periodontal regeneration by suppressing the inflammatory response through TNF-α production, and transplantation of PDLSC-CM could be a novel approach for periodontal regenerative therapy.


Asunto(s)
Medios de Cultivo Condicionados/farmacología , Ligamento Periodontal/metabolismo , Periodoncio/fisiología , Regeneración/efectos de los fármacos , Células Madre/metabolismo , Adolescente , Adulto , Animales , Niño , Femenino , Humanos , Masculino , Ligamento Periodontal/citología , Periodoncio/lesiones , Ratas Sprague-Dawley , Células Madre/citología
4.
Tissue Eng Part A ; 20(3-4): 693-704, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24032400

RESUMEN

Periodontal disease is characterized by the destruction of tooth supporting tissues. Regeneration of periodontal tissues using ex vivo expanded cells has been introduced and studied, although appropriate methodology has not yet been established. We developed a novel cell transplant method for periodontal regeneration using periodontal ligament stem cell (PDLSC)-transferred amniotic membrane (PDLSC-amnion). The aim of this study was to investigate the regenerative potential of PDLSC-amnion in a rat periodontal defect model. Cultured PDLSCs were transferred onto amniotic membranes using a glass substrate treated with polyethylene glycol and photolithography. The properties of PDLSCs were investigated by flow cytometry and in vitro differentiation. PDLSC-amnion was transplanted into surgically created periodontal defects in rat maxillary molars. Periodontal regeneration was evaluated by microcomputed tomography (micro-CT) and histological analysis. PDLSCs showed mesenchymal stem cell-like characteristics such as cell surface marker expression (CD90, CD44, CD73, CD105, CD146, and STRO-1) and trilineage differentiation ability (i.e., into osteoblasts, adipocytes, and chondrocytes). PDLSC-amnion exhibited a single layer of PDLSCs on the amniotic membrane and stability of the sheet even with movement and deformation caused by surgical instruments. We observed that the PDLSC-amnion enhanced periodontal tissue regeneration as determined by micro-CT and histology by 4 weeks after transplantation. These data suggest that PDLSC-amnion has therapeutic potential as a novel cell-based regenerative periodontal therapy.


Asunto(s)
Amnios/trasplante , Ligamento Periodontal/fisiología , Regeneración , Trasplante de Células Madre , Células Madre/citología , Adolescente , Adulto , Animales , Células Cultivadas , Humanos , Masculino , Maxilar/diagnóstico por imagen , Maxilar/patología , Maxilar/cirugía , Células Madre Mesenquimatosas/citología , Ligamento Periodontal/diagnóstico por imagen , Ratas , Ratas Endogámicas F344 , Ratas Desnudas , Tomografía Computarizada por Rayos X , Adulto Joven
5.
J Periodontol ; 84(10): 1425-33, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23240762

RESUMEN

BACKGROUND: Periodontal ligament (PDL) contributes to maintaining homeostasis in periodontal tissues by supplying stem/progenitor cells. It has long been suggested that PDL stem cells/progenitors are located around blood vessels. Recently mesenchymal stem cells (MSCs) have been isolated and cultured from PDL in vitro, although the location of the stem cells in PDL is unclear. The purpose of this study is to test the characteristics of human PDL stem cells (PDLSCs) and examine their similarity to related vascular cell types, such as pericytes and endothelial cells. METHODS: PDLSCs were obtained from healthy extracted teeth using the collagenase/dispase enzyme digestion method. MSC and pericyte characteristics of PDLSCs were examined by cell surface marker expression using flow cytometry. The expression of pericyte markers was tested using immunohistochemistry. Pericyte-like functions of PDLSCs were examined in co-culture of PDLSCs and umbilical vein endothelial cells on a gel matrix. RESULTS: Cultured PDLSCs were positive for both MSC markers and pericyte markers, including cluster of differentiation 146 (CD146), neural/glial antigen 2 (NG2), and CD140b. When pericyte marker expression was explored in rat periodontal tissue sections, CD146- and NG2-positive signals were observed in the perivascular area of the PDL. Further, when the cells were cultured with human umbilical cord endothelial cells under conditions for forming capillary-like structures in vitro, PDLSCs localized adjacent to endothelial cells and contributed to the stability of the capillary-like structure. CONCLUSIONS: PDLSCs possess pericyte-like characteristics and may localize as pericytes in the PDL. These data provide useful information for stem cell biology in periodontal research and stem cell-based periodontal therapy.


Asunto(s)
Pericitos/fisiología , Ligamento Periodontal/citología , Células Madre/fisiología , Adipocitos/fisiología , Adolescente , Adulto , Animales , Antígenos/análisis , Antígeno CD146/análisis , Capilares/citología , Técnicas de Cultivo de Célula , Diferenciación Celular/fisiología , Técnicas de Cocultivo , Células Endoteliales/fisiología , Endotelio Vascular/citología , Femenino , Citometría de Flujo/métodos , Humanos , Imagenología Tridimensional/métodos , Inmunohistoquímica , Masculino , Osteoblastos/fisiología , Proteoglicanos/análisis , Ratas , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/análisis , Células del Estroma/fisiología , Venas Umbilicales/citología , Adulto Joven
6.
Langmuir ; 20(23): 10086-92, 2004 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-15518498

RESUMEN

We present optical investigations on the conformation of oligonucleotide layers on Au surfaces. Our studies concentrate on the effect of varying surface coverage densities on the structural properties of layers of 12- and 24mer single-stranded DNA, tethered to the Au surface at one end while being labeled with a fluorescent marker at the opposing end. The distance-dependent energy transfer from the marker dye to the metal surface, which causes quenching of the observed fluorescence, is used to provide information on the orientation of the DNA strands relative to the surface. Variations in the oligonucleotide coverage density, as determined from electrochemical quantification, over 2 orders of magnitude are achieved by employing different preparation conditions. The observed enhancement in fluorescence intensity with increasing DNA coverage can be related to a model involving mutual steric interactions of oligonucleotides on the surface, as well as fluorescence quenching theory. Finally, the applicability of the presented concepts for investigations of heterogeneous monolayers is demonstrated by means of studying the coadsorption of mercaptohexanol onto DNA-modified Au surfaces.


Asunto(s)
Oligodesoxirribonucleótidos/química , ADN/química , Transferencia de Energía , Colorantes Fluorescentes , Oro , Membranas Artificiales , Conformación de Ácido Nucleico , Espectrometría de Fluorescencia , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA