Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Hazard Mater ; 432: 128730, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35338937

RESUMEN

Microplastics (MPs, sizes <5 mm) have been found to be widely distributed in various environments, such as marine, freshwater, terrestrial and atmospheric systems. Machine learning provides a potential solution for evaluating the ecological risks of MPs based on big data. Compared with traditional models, data-driven machine learning can accelerate the realization of the control of hazardous MPs and reduce the impact of MPs at both local and global scales. However, there are some urgent issues that should be resolved. For example, lack of MP databases and incomparable literatures causing the current MP data cannot fully support big data research. Therefore, it is imperative to formulate a set of standard and universal MP collection and testing protocols. For machine learning, predictions of large-scale MP distribution and the corresponding environmental risks remain lacking. To accelerate studies of MPs in the future, the methods and theories achieved for other particle pollutants, such as nanomaterials and aerosols, can be referenced. Beyond predication alone, the improvement of causality and interpretability of machine learning deserves attention in the studies of MP risks. Overall, this perspective paper provides insights for the development of machine learning methods in research on the environmental risks of MPs.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Aprendizaje Automático , Microplásticos/toxicidad , Plásticos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
2.
Environ Int ; 162: 107172, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35290867

RESUMEN

Microplastic (MP) contamination has become an increasingly serious environmental problem. However, the risks of MP contamination in complex global climatic and geographic scenarios remain unclear. We established a multifeature superposition analysis boosting (MFAB) machine learning (ML) approach to address the above knowledge gap. MFAB-ML identified and predicted the importance, interaction networks and superposition effects of multiple features, including 34 characteristic variables (e.g., MP contamination and climatic and geographic variables), from 1354 samples distributed globally. MFAB-ML analysis achieved realistic and significant results, in some cases even opposite to those obtained using a single or a few features, revealing the importance of considering complicated scenarios. We found that the microbial diversity in East Asian seas will continually decrease due to the superposition effects of MPs with ocean warming; for example, the Chao1 index will decrease by 10.32% by 2065. The present work provides a powerful approach to identify and predict the multifeature superposition effects of pollutants on realistic environments in complicated climatic and geographic scenarios, overcoming the bias from general studies.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Microplásticos/toxicidad , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA