Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomacromolecules ; 25(2): 605-613, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37844272

RESUMEN

Taking inspiration from spider silk protein spinning, we developed a method to produce tough filaments using extrusion-based 3D bioprinting and salting-out of the protein. To enhance both stiffness and ductility, we have designed a blend of partially crystalline, thermally sensitive natural polymer gelatin and viscoelastic G-polymer networks, mimicking the components of spider silk. Additionally, we have incorporated inorganic nanoparticles as a rheological modifier to fine-tune the 3D printing properties. This self-healing nanocomposite hydrogel exhibits exceptional mechanical properties, biocompatibility, shear thinning behavior, and a well-controlled gelation mechanism for 3D printing.


Asunto(s)
Bioimpresión , Ingeniería de Tejidos , Nanogeles , Impresión Tridimensional , Seda , Polímeros , Hidrogeles/química , Andamios del Tejido/química
2.
Environ Technol ; 41(12): 1477-1485, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-30339487

RESUMEN

Membrane bioreactor (MBR) has become a promising technology for wastewater treatment. However, membrane fouling frequently occurred which greatly increased operational expense. Two different membrane fouling alleviation mechanisms were explored in this study. Addition of poly dimethyldiallylammonium chloride (PDMDAAC) facilitated formation of flocs-flocs aggregates, which were more adaptable to the changing environment, resulting in less soluble microbial products (SMP) secretion. However, PDMDAAC lose activity gradually, and had a less sustainable effect on membrane fouling alleviation. Nanoscale Fe3O4 was applied to alleviate membrane fouling, and membrane sustainable filtration cycle extended 2-fold compared to the control group. Results showed that dehydrogenase activity in the reactor with optimal addition of nanoscale Fe3O4 increased 2.86 ± 0.11 times compared to control group. SMP (especially tryptophan protein-like substances) decreased to 9.79 ± 1.34 mg L-1 with the addition of nanoscale Fe3O4, which was lower than that in the control group (15.31 ± 0.53 mg L-1). It's speculated that nanoscale Fe3O4 performed as conductive material, which intensified interspecies electron transfer. The sludge dehydrogenase activity was then enhanced, which facilitated the utilization and microbial degradation of SMP, suppressing membrane fouling consequently.


Asunto(s)
Reactores Biológicos , Membranas Artificiales , Cloruros , Aguas del Alcantarillado , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA