Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
AAPS PharmSciTech ; 24(4): 82, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36949351

RESUMEN

Glioma, in which a malignant tumor cell occurs in neural mesenchymal cells, has a rapid progression and poor prognosis, which is still far from desirable in clinical treatments. We developed a lab-on-a-chip (LOC) device for the rapid and efficient preparation of vitexin/indocyanine green (ICG) liposomes. Vitexin could be released from liposome to kill cancer cell, which can potentially improve the glioma therapeutic effect and reduce the treatment time through synergistic photodynamic/photothermal therapies (PDT/PTT). The vitexin/ICG liposome was fabricated via LOC and its physicochemical property and release in vitro were evaluated. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method and live/dead staining were used to examine the enhanced antitumor effect of vitexin/ICG liposome in cooperation with PDT/PTT, while the related mechanism was explored by flow cytometry and western blot. The results were as follows: (1) The prepared vitexin/ICG liposome was smaller in size, homogenous in particle size distribution with significant low polydispersity index (PDI), and enhanced cumulative release in vitro. (2) We found that the formulated liposome presented strong cancer cell inhibition and suppression of its migration in a dose-dependent manner. (3) Further mechanistic studies showed that liposome combined with near-infrared irradiation could significantly upregulate levels of B cell lymphoma 2-associated X (Bax) protein and decrease B cell lymphoma 2 (Bcl-2) at protein levels. The vitexin/ICG liposomes prepared based on a simple LOC platform can effectively enhance the solubility of insoluble drugs, and the combined effect of PTT/PDT can effectively increase their antitumor effect, which provides a simple and valid method for the clinical translation of liposomes.


Asunto(s)
Glioma , Fotoquimioterapia , Humanos , Verde de Indocianina/química , Verde de Indocianina/farmacología , Verde de Indocianina/uso terapéutico , Liposomas/química , Fotoquimioterapia/métodos , Microfluídica , Glioma/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2 , Línea Celular Tumoral
2.
Drug Dev Res ; 80(2): 230-245, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30414214

RESUMEN

Punicic acid of pomegranate oil (PAP) has gained heightened interest due to several health benefits, such as anticarcinogenic, antidiabetic, and antiatherosclerotic properties. However, these bioactivities have been hampered by chemical instability, poor water solubility, rapid metabolism, and low bioavailability of PAP. Therefore, this study was aimed at optimizing the liposomal formulation of Triacylglycerol-bound punicic acid with its regioisomers (TPAR) for improved oral bioavailability and increased hepatoprotection through antioxidation and anti-inflammation. Herein, the optimized TPAR nanoliposome (TPAR-NL) was developed using thin-film dispersion method and subsequently characterized with appropriate indices. The optimized TPAR-NL produced fairly stable spherical nanoparticles (˂ 200 nm) with encapsulation efficiency (%EE) of 85.77%, as well as enhanced in vitro release and improved oral bioavailability. The TPAR-NL exhibited profound antihepatotoxic effect in mice pretreated with carbon tetrachloride (CCl4 ) via reduction of serum alanine aminotransferase, aspartate aminotransferase, and total bilirubin levels compared with free TPAR. The TPAR-loaded liposome also significantly reduced oxidative stress by increasing superoxide dismutase and glutathione levels while lowering malonaldehyde concentration compared with the free TPAR. The TPAR-LNF further exhibited remarkable anti-inflammatory activity compared with the free drug via inhibition of interleukin-6 and tumor necrosis factor-alpha generation. Thus, the developed nanoliposomes potentiated the antihepatotoxic activity of TPAR via antioxidation and anti-inflammation.


Asunto(s)
Antiinflamatorios/administración & dosificación , Antioxidantes/administración & dosificación , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Ácidos Linolénicos/administración & dosificación , Nanopartículas/administración & dosificación , Triglicéridos/administración & dosificación , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacocinética , Antioxidantes/química , Antioxidantes/farmacocinética , Disponibilidad Biológica , Tetracloruro de Carbono , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Liberación de Fármacos , Ácidos Linolénicos/química , Ácidos Linolénicos/farmacocinética , Liposomas , Hígado/efectos de los fármacos , Hígado/patología , Masculino , Ratones Endogámicos ICR , Nanopartículas/química , Ratas Sprague-Dawley , Triglicéridos/química , Triglicéridos/farmacocinética
3.
Int J Pharm ; 641: 123039, 2023 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-37225026

RESUMEN

Bisdemethoxycurcumin (BDMC) is the main active ingredient that is isolated from Zingiberaceae plants, wherein it has excellent anti-tumor effects. However, insolubility in water limits its clinical application. Herein, we reported a microfluidic chip device that can load BDMC into the lipid bilayer to form BDMC thermosensitive liposome (BDMC TSL). The natural active ingredient glycyrrhizin was selected as the surfactant to improve solubility of BDMC. Particles of BDMC TSL had small size, homogenous size distribution, and enhanced cultimulative release in vitro. The anti-tumor effect of BDMC TSL on human hepatocellular carcinomas was investigated via 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method, live/dead staining, and flowcytometry. These results showed that the formulated liposome had a strong cancer cell inhibitory, and presented a dose-dependent inhibitory effect on migration. Further mechanistic studies showed that BDMC TSL combined with mild local hyperthermia could significantly upregulate B cell lymphoma 2 associated X protein levels and decrease B cell lymphoma 2 protein levels, thereby inducing cell apoptosis. The BDMC TSL that was fabricated via microfluidic device were decomposed under mild local hyperthermia, which could beneficially enhance the anti-tumor effect of raw insoluble materials and promote translation of liposome.


Asunto(s)
Curcumina , Hipertermia Inducida , Humanos , Liposomas , Curcumina/farmacología , Microfluídica , Línea Celular Tumoral , Diarilheptanoides , Proteínas Proto-Oncogénicas c-bcl-2
4.
Int J Pharm ; 535(1-2): 308-315, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-29126908

RESUMEN

[6]-Gingerol, one of the components of the rhizome of Ginger, has a variety of biological activities such as anticoagulant, antioxidative, antitumor, anti-inflammatory, antihypertensive, and so forth. However, as one of the homologous phenolic ketones, [6]-gingerol is insoluble in water which limits its applications. Herein, we prepared [6]-gingerol proliposomes through modified thin-film dispersion method, which was spherical or oval, and physicochemically stable with narrow size distribution. Surprisingly, in vitro release of [6]-gingerol loaded proliposome compared with the free [6]-gingerol was significantly higher and its oral bioavailability increased 5-fold in vivo. Intriguingly, its antitumor effect was enhanced in the liposome formulation. Thus, our prepared [6]-gingerol proliposome proved to be a novel formulation for [6]-gingerol, which significantly improved its antitumor effect.


Asunto(s)
Antineoplásicos/administración & dosificación , Antineoplásicos/química , Catecoles/administración & dosificación , Catecoles/química , Alcoholes Grasos/administración & dosificación , Alcoholes Grasos/química , Administración Oral , Animales , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Disponibilidad Biológica , Catecoles/farmacocinética , Catecoles/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Química Farmacéutica , Liberación de Fármacos , Alcoholes Grasos/farmacocinética , Alcoholes Grasos/uso terapéutico , Células Hep G2 , Humanos , Liposomas , Masculino , Neoplasias/tratamiento farmacológico , Ratas Sprague-Dawley
5.
Biomed Mater ; 13(1): 015022, 2017 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-28855426

RESUMEN

Direct reprogramming of other somatic cells into neurons is an alternative strategy for the recovery of an injured nervous system. In this work, we developed a new non-viral gene carrier based on Porphyra yezoensis polysaccharide (PYP). After modification with ethylenediamine, the cationized PYP (Ed-PYP) was combined with plasmids encoding Ascl1, Brn2 and FoxA1 to form spherical nanoscale particles (Ed-PYP-pABF nanoparticles). Cytotoxicity assays proved that Ed-PYP-pABF nanoparticles had a better safety profile than Lipofectamine 2000 and polyetherimide. Characterization tests illustrated that the Ed-PYP-pABF nanoparticles at an Ed-PYP:pABF weight ratio of 40:1 is a potential candidate for gene delivery, which was further supported by Western blot and plasmid encoding enhanced green fluorescence protein transfection. Based on this transfection strategy, we co-delivered pABF to 3T6 cells using Ed-PYP. ELISA indicated that the levels of brain-derived neurotrophic factor, nerve growth factors and sonic hedgehog reached a maximum at 14 days after the last transfection. Immunofluorescence and Western blot further exhibited positive expression of neurofilament 200, Nestin, glial fibrillary acidic protein, growth associated protein-43, ß-3tubulin, and microtubule associated protein 2, proving the successful conversion of 3T6 cells into neurons. Taken together, these results illustrated that a natural polysaccharide-based gene co-delivery system is a promising strategy for neural reprogramming.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/química , Fibroblastos/citología , Técnicas de Transferencia de Gen , Factor Nuclear 3-alfa del Hepatocito/química , Proteínas del Tejido Nervioso/química , Neuronas/citología , Factores del Dominio POU/química , Polisacáridos/química , Animales , Cationes , Diferenciación Celular , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Ratones , Nanopartículas/química , Polímeros/química , Porphyra
6.
Adv Healthc Mater ; 4(8): 1203-14, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25800699

RESUMEN

A novel blended nanoparticle (NP) system for the delivery of anticancer drugs and its surprisingly high efficacy for cancer chemotherapy by blending a targeting polymer folic acid-poly(ethylene glycol)-b-poly(lactide-co-glycolide) (FA-PEG-b-PLGA) and a miscible structurally similar polymer D-α-tocopheryl polyethylene glycol 1000 succinate-poly(lactide-co-glycolide) (TPGS-PLGA) is reported. This blended NP system can be achieved through a simple and effective nanoprecipitation technique, and possesses unique properties: i) improved long-term compatibility brought by PEG-based polymers; ii) reduced multidrug resistance mediated by P-glycoprotein (P-gp) in tumor cells and increased bioavailability of anticancer drugs by incorporation of TPGS; iii) the regulation of controlled release through polymer ratios and active targeting by FA. Both in vitro cell experiments and in vivo antitumor assays demonstrated the reported blended NP system can achieve the best therapeutic efficiency in an extremely safe, simple and highly efficient process for cancer therapy. Moreover, this NP system is highly efficient in forming NPs with multiple functions, without repeated chemical modification of polymers, which is sometimes complex, inefficient and high cost. Therefore, the development of this novel blended NP concept is extremely meaningful for the application of pharmaceutical nanotechnology in recent studies.


Asunto(s)
Nanopartículas/química , Neoplasias/terapia , Polímeros/química , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Animales , Antineoplásicos/química , Antineoplásicos/farmacología , Materiales Biocompatibles/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Docetaxel , Sistemas de Liberación de Medicamentos , Resistencia a Antineoplásicos , Endocitosis/efectos de los fármacos , Femenino , Ácido Fólico/química , Células HeLa , Humanos , Células MCF-7 , Ratones , Ratones SCID , Tamaño de la Partícula , Polietilenglicoles/química , Poliglactina 910/química , Ácido Poliglicólico/química , Taxoides/farmacología , Vitamina E/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA