RESUMEN
BACKGROUND: The Hippo pathway is a conserved tumour suppressor signalling pathway, and its dysregulation is often associated with abnormal cell growth and tumorigenesis. We previously revealed that the transcriptional coactivator Yes-associated protein (YAP), the key effector of the Hippo pathway, is a molecular target for glioblastoma (GBM), the most common malignant brain tumour. Inhibiting YAP with small interfering RNA (siYAP) or the specific inhibitor verteporfin (VP) can diminish GBM growth to a certain degree. RESULTS: In this study, to enhance the anti-GBM effect of siYAP and VP, we designed stepwise-targeting and hypoxia-responsive liposomes (AMVY@NPs), which encapsulate hypoxia-responsive polymetronidazole-coated VP and DOTAP adsorbed siYAP, with angiopep-2 (A2) modification on the surface. AMVY@NPs exhibited excellent bloodâbrain barrier crossing, GBM targeting, and hypoxia-responsive and efficient siYAP and VP release properties. By inhibiting the expression and function of YAP, AMVY@NPs synergistically inhibited both the growth and stemness of GBM in vitro. Moreover, AMVY@NPs strongly inhibited the growth of orthotopic U87 xenografts and improved the survival of tumour-bearing mice without adverse effects. CONCLUSION: Specific targeting of YAP with stepwise-targeting and hypoxia-responsive liposome AMVY@NPs carrying siYAP and VP efficiently inhibited GBM progression. This study provides a valuable drug delivery platform and creative insights for molecular targeted treatment of GBM in the future.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Liposomas , Ratones Desnudos , ARN Interferente Pequeño , Verteporfina , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Liposomas/química , Verteporfina/farmacología , Verteporfina/uso terapéutico , Animales , Humanos , Línea Celular Tumoral , Ratones , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Proteínas Señalizadoras YAP , Nanopartículas/química , Ratones Endogámicos BALB C , Factores de Transcripción/metabolismo , Angiomotinas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , PéptidosRESUMEN
PURPOSE: GOLPH3 has been shown to be involved in glioma proliferation. In this study, we aimed to demonstrate that GOLPH3 can serve as a target for glioma gene therapy. METHODS: During the experiment, cationic liposomes with angiopep-2 (A2-CL) were used to deliver siGOLPH3 crossing the blood-brain barrier and reaching the glioma. RESULTS: At the cellular level, the A2-CL/siGOLPH3 could silence GOLPH3 and then effectively inhibited the proliferation of cells. In vivo experiments, using U87-GFP-Luci-bearing BALB/c mouse models, we demonstrated that A2-CL could deliver GOLPH3-siRNA specifically to glioma and effectively inhibit glioma growth. CONCLUSIONS: This study shows that GOLPH3 has great potential as a target for the gene therapy of glioma and is of great value in precise medical applications.
Asunto(s)
Neoplasias Encefálicas/terapia , Terapia Genética , Glioma/terapia , Liposomas/uso terapéutico , Proteínas de la Membrana/antagonistas & inhibidores , ARN Interferente Pequeño/administración & dosificación , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Cationes/química , Cationes/farmacocinética , Cationes/uso terapéutico , Línea Celular , Glioma/diagnóstico por imagen , Glioma/metabolismo , Glioma/patología , Humanos , Liposomas/química , Liposomas/farmacocinética , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos BALB C , Ratones Desnudos , Trasplante de Neoplasias , Interferencia de ARN , ARN Interferente Pequeño/farmacocinéticaRESUMEN
Glioma is the most prevalent type of malignant brain tumor and is usually very aggressive. Because of the high invasiveness and aggressive proliferative growth of glioma, it is difficult to resect completely or cure with surgery. Residual glioma cells are a primary cause of postoperative recurrence. Herein, we describe a hypoxia-responsive lipid polymer nanoparticle (LN) for fluorescence-guided surgery, chemotherapy, photodynamic therapy (PDT), and photothermal therapy (PTT) combination multitherapy strategies targeting glioma. The hypoxia-responsive LN [LN (DOX + ICG)] contains a hypoxia-responsive component poly(nitroimidazole)25 [P-(Nis)25], the glioma-targeting peptide angiopep-2 (A2), indocyanine green (ICG), and doxorubicin (DOX). LN (DOX + ICG) comprises four distinct functional components: (1) A2: A2 modified nanoparticles effectively target gliomas, enhancing drug concentration in gliomas; (2) P-(Nis)25: (i) the hydrophobic component of LN (DOX + ICG) with hypoxia responsive ability to encapsulate DOX and ICG; (ii) allows rapid release of DOX from LN (DOX + ICG) after 808 nm laser irradiation; (3) ICG: (i) ICG allows imaging-guided surgery, combining PDT and PTT therapies; (ii) upon irradiation with an 808 nm laser, ICG creates a hypoxic environment; (4) DOX inhibits glioma growth. This work demonstrates that LN (DOX + ICG) might provide a novel clinical approach to preventing post-surgical recurrence of glioma.
Asunto(s)
Doxorrubicina/química , Lípidos/química , Nanopartículas/química , Polímeros/química , Animales , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacología , Antibióticos Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Femenino , Glioma/diagnóstico por imagen , Glioma/tratamiento farmacológico , Glioma/patología , Humanos , Verde de Indocianina/química , Verde de Indocianina/farmacología , Verde de Indocianina/uso terapéutico , Rayos Infrarrojos , Ratones , Ratones Endogámicos ICR , Péptidos/química , Péptidos/uso terapéutico , Fotoquimioterapia , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Terapia Fototérmica , Trasplante HeterólogoRESUMEN
Treatment of malignant glioma is a challenge facing cancer therapy. In addition to surgery, and chemotherapy, radiotherapy (RT) is one of the most effective modalities of glioma treatment. However, there are two crucial challenges for RT facing malignant glioma therapy: first, gliomas are known to be resistant to radiation due to their intratumoral hypoxia; second, radiosensitizers may exhibit a lack of target specificity, which may cause a lower concentration of radiosensitizers in tumors and toxic side effects in normal tissues. Thus, novel angiopep-2-lipid-poly-(metronidazoles)n (ALP-(MIs)n) hypoxic radiosensitizer-polyprodrug nanoparticles (NPs) were designed to enhance the radiosensitizing effect on gliomas. Methods: In this study, different degrees and biodegradabilites of hypoxic radiosensitizer MIs-based polyprodrug (P-(MIs)n) were synthesized as a hydrophobic core. P-(MIs)n were mixed with DSPE-PEG2000, angiopep-2-DSPE-PEG2000 and lecithin to self-assemble ALP-(MIs)n through a single-step nanoprecipitation method. The ALP-(MIs)n encapsulate doxorubicin (DOX) (ALP-(MIs)n/DOX) and provoke the release of DOX under hypoxic conditions for glioma chemo- and radiotherapy. In vivo glioma targeting was tested in an orthotopic glioma using live animal fluorescence/bioluminescence imaging. The effect on sensitization to RT of ALP-(MIs)n and the combination of chemotherapy and RT of ALP-(MIs)n/DOX for glioma treatment were also investigated both in vitro and in vivo. Results: ALP-(MIs)n/DOX effectively accumulated in gliomas and could reach the hypoxic glioma site after systemic in vivo administration. These ALP-(MIs)n showed a significant radiosensitizing effect on gliomas and realized combination chemotherapy and RT for glioma treatment both in vitro and in vivo. Conclusions: In summary, we constructed a lipid-poly-(hypoxic radiosensitized polyprodrug) nanoparticles for enhancing the RT sensitivity of gliomas and achieving the combination of radiation and chemotherapy for gliomas.
Asunto(s)
Antineoplásicos/administración & dosificación , Quimioterapia/métodos , Glioma/tratamiento farmacológico , Hipoxia , Nanopartículas/administración & dosificación , Profármacos/administración & dosificación , Radioterapia/métodos , Animales , Antineoplásicos/síntesis química , Línea Celular Tumoral , Modelos Animales de Enfermedad , Doxorrubicina/administración & dosificación , Glioma/patología , Liposomas/administración & dosificación , Liposomas/síntesis química , Masculino , Ratones Endogámicos ICR , Modelos Teóricos , Terapia Molecular Dirigida/métodos , Oxidación-Reducción , Péptidos/administración & dosificación , Profármacos/síntesis química , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Resultado del TratamientoRESUMEN
The treatment of malignant primary brain tumors is challenging. Concomitant radiochemotherapy has become the standard clinical treatment for malignant glioma, but there are two critical challenges to overcome in order to increase efficacy. First, glioma is known to have increased resistant to radiation due to its intra-tumoral hypoxia. In addition, the blood-brain barrier (BBB) restricts the distribution of the chemotherapeutic agent to the brain. Therefore, we developed a hypoxic radiosensitizer-prodrug liposome (MLP), in order to deliver DOX to the tumor and to overcome the above challenges, achieving a synergistic chemo-/radiotherapy treatment of malignant glioma. In this study, hypoxic radiosensitizer nitroimidazoles were conjugated with lipid molecules with a hydrolysable ester bond to form MDH. MDH was mixed together with DSPE-PEG2000 and cholesterol to make MLP liposomes, which were found to have strong radiosensitivity and to promote cargo release under hypoxic conditions, due to the properties of nitroimidazoles under hypoxic conditions. MLP/DOX was found to have distinct advantages, including precise and stealthy pharmacokinetics and efficient passive uptake by the tumor. Furthermore, the combination of MLP/DOX and radiotherapy (RT) significantly inhibited glioma growth as assessed by in vivo bioluminescence imaging. These findings suggest that MLP is a promising candidate as a DOX delivery system to enhance the antitumor treatment effects on glioma, owing to synergistic chemo-/radiotherapy.
Asunto(s)
Quimioradioterapia/métodos , Doxorrubicina/administración & dosificación , Glioma/tratamiento farmacológico , Liposomas/administración & dosificación , Fármacos Sensibilizantes a Radiaciones/administración & dosificación , Hipoxia Tumoral , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/química , Línea Celular Tumoral , Doxorrubicina/química , Glioma/patología , Liposomas/química , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Resultado del TratamientoRESUMEN
Gliomas are highly radioresistant tumors, mainly due to hypoxia in the core region of the gliomas and efficient DNA double-strand break repair. However, the design of a radiosensitizer incorporating the two above mechanisms is difficult and has rarely been reported. Thus, this study develops a hypoxic radiosensitizer-prodrug liposome (MLP) to deliver the DNA repair inhibitor Dbait (MLP/Dbait) to achieve the simultaneous entry of radiosensitizers with two different mechanisms into the glioma. MLP/Dbait effectively sensitizes glioma cells to X-ray radiotherapy (RT). Histological and microscopic examinations of dissected brain tissue confirm that MLP effectively delivers Dbait into the glioma. Furthermore, the combination of MLP/Dbait with RT significantly inhibits growth of the glioma, as assessed by in vivo bioluminescence imaging. These findings suggest that MLP is a promising candidate as a Dbait delivery system to enhance the effect of RT on glioma, owing to the synergistic effects of the two different radiosensitizers.
Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/radioterapia , Reparación del ADN , Glioma/tratamiento farmacológico , Glioma/radioterapia , Hipoxia/patología , Profármacos/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/efectos de la radiación , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Glioma/patología , Liposomas , Ratones Endogámicos ICR , Profármacos/farmacología , Espectroscopía de Protones por Resonancia Magnética , Fármacos Sensibilizantes a Radiaciones/farmacología , RatasRESUMEN
Here, we report the hypoxia-responsive ionizable liposomes to deliver small interference RNA (siRNA) anticancer drugs, which can selectively enhance cellular uptake of the siRNA under hypoxic and low-pH conditions to cure glioma. For this purpose, malate dehydrogenase lipid molecules were synthesized, which contain nitroimidazole groups that impart hypoxia sensitivity and specificity as hydrophobic tails, and tertiary amines as hydrophilic head groups. These malate dehydrogenase molecules, together with DSPE-PEG2000 and cholesterol, were self-assembled into O'1,O1-(3-(dimethylamino)propane-1,2-diyl) 16-bis(2-(2-methyl-5-nitro-1H-imidazol-1-yl)ethyl) di(hexadecanedioate) liposomes (MLP) to encapsulate siRNA through electrostatic interaction. Our study showed that the MLP could deliver polo-like kinase 1 siRNA (siPLK1) into glioma cells and effectively enhance the cellular uptake of MLP/siPLK1 because of increased positive charges induced by hypoxia and low pH. Moreover, MLP/siPLK1 was shown to be very effective in inhibiting the growth of glioma cells both in vitro and in vivo. Therefore, the MLP is a promising siRNA delivery system for tumor therapy.