Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Am Chem Soc ; 146(11): 7498-7505, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38465595

RESUMEN

Biology achieves remarkable function through processes arising from spontaneous or transient liquid-liquid phase separation (LLPS) of proteins and other biomolecules. While polymeric systems can achieve similar phenomena through simple or complex coacervation, LLPS with supramolecular materials has been less commonly shown. Functional applications for synthetic LLPS systems are an expanding area of emphasis, with particular focus on capturing the transient and dynamic state of these structures for use in biomedicine. Here, a net-cationic supramolecular peptide amphiphile building block with a glucose-binding motif is shown that forms LLPS structures when combined with a net-negatively charged therapeutic protein, dasiglucagon, in the presence of glucose. The droplets that arise are dynamic and coalesce quickly. However, the interface can be stabilized by addition of a 4-arm star PEG. When the stabilized droplets formed in glucose are transferred to a bulk phase containing different glucose concentrations, their stability and lifetime decrease according to bulk glucose concentration. This glucose-dependent formation translates into an accelerated release of dasiglucagon in the absence of glucose; this hormone analogue itself functions therapeutically to correct low blood glucose (hypoglycemia). These droplets also offer function in mitigating the most severe effects of hypoglycemia arising from an insulin overdose through delivery of dasiglucagon in a mouse model of hypoglycemic rescue. Accordingly, this approach to use complexation between a supramolecular peptide amphiphile and a therapeutic protein in the presence of glucose leads to droplets with functional potential to dissipate for the release of the therapeutic material in low blood glucose environments.


Asunto(s)
Glucemia , Hipoglucemia , Animales , Ratones , Glucosa , Hipoglucemia/tratamiento farmacológico , Hipoglucemia/metabolismo , Proteínas , Polímeros
2.
BMC Oral Health ; 23(1): 209, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041485

RESUMEN

BACKGROUND: The dentinogenesis differentiation of dental pulp stem cells (DPSCs) is controlled by the spatio-temporal expression of differentiation related genes. RNA N6-methyladenosine (m6A) methylation, one of the most abundant internal epigenetic modification in mRNA, influences various events in RNA processing, stem cell pluripotency and differentiation. Methyltransferase like 3 (METTL3), one of the essential regulators, involves in the process of dentin formation and root development, while mechanism of METTL3-mediated RNA m6A methylation in DPSC dentinogenesis differentiation is still unclear. METHODS: Immunofluorescence staining and MeRIP-seq were performed to establish m6A modification profile in dentinogenesis differentiation. Lentivirus were used to knockdown or overexpression of METTL3. The dentinogenesis differentiation was analyzed by alkaline phosphatase, alizarin red staining and real time RT-PCR. RNA stability assay was determined by actinomycin D. A direct pulp capping model was established with rat molars to reveal the role of METTL3 in tertiary dentin formation. RESULTS: Dynamic characteristics of RNA m6A methylation in dentinogenesis differentiation were demonstrated by MeRIP-seq. Methyltransferases (METTL3 and METTL14) and demethylases (FTO and ALKBH5) were gradually up-regulated during dentinogenesis process. Methyltransferase METTL3 was selected for further study. Knockdown of METTL3 impaired the DPSCs dentinogenesis differentiation, and overexpression of METTL3 promoted the differentiation. METTL3-mediated m6A regulated the mRNA stabiliy of GDF6 and STC1. Furthermore, overexpression of METTL3 promoted tertiary dentin formation in direct pulp capping model. CONCLUSION: The modification of m6A showed dynamic characteristics during DPSCs dentinogenesis differentiation. METTL3-mediated m6A regulated in dentinogenesis differentiation through affecting the mRNA stability of GDF6 and STC1. METTL3 overexpression promoted tertiary dentin formation in vitro, suggesting its promising application in vital pulp therapy (VPT).


Asunto(s)
Pulpa Dental , Dentinogénesis , Animales , Ratas , Diferenciación Celular , Metiltransferasas/genética , Metiltransferasas/metabolismo , ARN/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Células Madre/metabolismo
3.
Biomacromolecules ; 23(10): 4401-4411, 2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36173091

RESUMEN

The ongoing rise in diabetes incidence necessitates improved therapeutic strategies to enable precise blood glucose control with convenient device form factors. Microneedle patches are one such device platform capable of achieving therapeutic delivery through the skin. In recent years, polymeric microneedle arrays have been reported using methods of in situ polymerization and covalent crosslinking in microneedle molds. In spite of promising results, in situ polymerization carries a risk of exposure to toxic unreacted precursors remaining in the device. Here, a polymeric microneedle patch is demonstrated that uses dynamic-covalent phenylboronic acid (PBA)-diol bonds in a dual role affording both network crosslinking and glucose sensing. By this approach, a pre-synthesized and purified polymer bearing pendant PBA motifs is combined with a multivalent diol crosslinker to prepare dynamic-covalent hydrogel networks. The ability of these dynamic hydrogels to shear-thin and self-heal enables their loading to a microneedle mold by centrifugation. Subsequent drying then yields a patch of uniformly shaped microneedles with the requisite mechanical properties to penetrate skin. Insulin release from these materials is accelerated in the presence of glucose. Moreover, short-term blood glucose control in a diabetic rat model following application of the device to the skin confirms insulin activity and bioavailability. Accordingly, dynamic-covalent crosslinking facilitates a route for fabricating microneedle arrays circumventing the toxicity concerns of in situ polymerization, offering a convenient device form factor for therapeutic insulin delivery.


Asunto(s)
Diabetes Mellitus , Insulina , Administración Cutánea , Animales , Sistemas de Liberación de Medicamentos/métodos , Glucosa , Hidrogeles , Insulina/química , Agujas , Polímeros/química , Ratas
4.
Artículo en Inglés | MEDLINE | ID: mdl-37937557

RESUMEN

BACKGROUND: Stem cell properties vary considerably based on the source and tissue site of mesenchymal stem cells (MSCs). The mandibular condyle is a unique kind of craniofacial bone with a special structure and a relatively high remodeling rate. MSCs here may also be unique to address specific physical needs. OBJECTIVE: The aim of this study was to compare the proliferation and multidirectional differentiation potential among MSCs derived from the tibia (TMSCs), mandibular ramus marrow (MMSCs), and condylar subchondral bone (SMSCs) of rats in vitro. METHODS: Cell proliferation and migration were assessed by CCK-8, laser confocal, and cell scratch assays. Histochemical staining and real-time PCR were used to evaluate the multidirectional differentiation potential and DNA methylation and histone deacetylation levels. RESULTS: The proliferation rate and self-renewal capacity of SMSCs were significantly higher than those of MMSCs and TMSCs. Moreover, SMSCs possessed significantly higher mineralization and osteogenic differentiation potential. Dnmt2, Dnmt3b, Hdac6, Hdac7, Hdac9, and Hdac10 may be instrumental in the osteogenesis of SMSCs. In addition, SMSCs are distinct from MMSCs and TMSCs with lower adipogenic differentiation and chondrogenic differentiation potential. The multidirectional differentiation capacities of TMSCs were exactly the opposite of those of SMSCs, and the results of MMSCs were intermediate. CONCLUSION: This research offers a new paradigm in which SMSCs could be a useful source of stem cells for further application in stem cell-based medical therapies due to their strong cell renewal and osteogenic capacity.

5.
ACS Biomater Sci Eng ; 8(11): 4873-4885, 2022 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-36317822

RESUMEN

Stimuli-responsive hydrogels are an area of active discovery for approaches to deliver therapeutics in response to disease-specific indicators. Glucose-responsive delivery of insulin is of particular interest in better managing diabetes. Accordingly, hydrogels have been explored as platforms that enable both a rate and dose of insulin release aligning with the real-time physiological disease state; materials often include glucose sensing by dynamic-covalent cross-linking between phenylboronic acids (PBAs) and diols, with competition from ambient glucose reducing cross-link density of the material and accelerating release of encapsulated insulin. Yet, these materials historically have challenges with insulin leakage, offer limited glucose-responsive release of the insulin payload, and require unreasonably high injection pressures for syringe administration. Here, a thermogel platform prepared from temperature-induced micelles formed into a network by PBA-Diol cross-linking is optimized using a formulation-centered approach to maximize glucose-responsive insulin delivery. Importantly, the dual-responsive nature of this platform enables a low-viscosity sol at ambient temperature for facile injection, solidifying into a stable viscoelastic hydrogel network once in the body. The final optimized formulation affords acceleration in insulin release in response to glucose and enables single dose blood glucose control in diabetic rodents when subjected to multiple glucose challenges.


Asunto(s)
Micelas , Poloxámero , Glucosa , Hidrogeles , Insulina/farmacología
6.
PLoS One ; 17(7): e0271738, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35862412

RESUMEN

INTRODUCTION: At present, the possible relationship between obstructive sleep apnea and periodontitis has been reported. The link remains ambiguous and unclear. The objective of this study is to assess the association between OSA and periodontitis. METHODS: Three databases, including Pubmed, Embase, and the Web of Science, were systematically searched to identify eligible studies that from their establishment to February 2022 for relevant studies. Subsequently, a meta-analysis was conducted to determine the relationship of pooled-effects more accurately. RESULTS: A summary analysis of the 9 results from the studies covering 43,414 individuals showed a statistical association results of the between OSA and the incidence rate of periodontitis(OR = 0.52; 95% CI: 0.49-0.55; I2 = 98.43%; P = 0.000). In addition, OSA patients and the risk of the population were statistically significantly associated with an increased risk of periodontitis.(OR = 1.56; 95% CI: 1.06-2.06; P = 0.00). CONCLUSIONS: Our results indicated that OSA may be associated with an increased risk of periodontitis. Further studies are required to confirm the link and explore the underlying mechanism of the link.


Asunto(s)
Periodontitis , Apnea Obstructiva del Sueño , Bases de Datos Factuales , Humanos , Incidencia , Periodontitis/complicaciones , Periodontitis/epidemiología , Factores de Riesgo , Apnea Obstructiva del Sueño/complicaciones , Apnea Obstructiva del Sueño/epidemiología
7.
Front Cell Dev Biol ; 9: 666186, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095133

RESUMEN

Dental caries and trauma always lead to pulp necrosis and subsequent root development arrest of young permanent teeth. The traditional treatment, apexification, with the absence of further root formation, results in abnormal root morphology and compromises long-term prognosis. Regeneration endodontics procedures (REPs) have been developed and considered as an alternative strategy for management of immature permanent teeth with pulpal necrosis, including cell-free and cell-based REPs. Cell-free REPs, including revascularization and cell homing with molecules recruiting endogenous mesenchymal stem cells (MSCs), have been widely applied in clinical treatment, showing optimistic periapical lesion healing and continued root development. However, the regenerated pulp-dentin complex is still absent in these cases. Dental MSCs, as one of the essentials of tissue engineering, are vital seed cells in regenerative medicine. Dental MSC-based REPs have presented promising potential with pulp-dentin regeneration in large animal studies and clinical trials via cell transplantation. In the present review, we summarize current understanding of the biological basis of clinical treatments for immature necrotic permanent teeth and the roles of dental MSCs during this process and update the progress of MSC-based REPs in the administration of immature necrotic permanent teeth.

8.
ACS Appl Mater Interfaces ; 13(37): 44147-44156, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34515459

RESUMEN

Immobilization of proteins on magnetic nanoparticles (MNPs) is an effective approach to improve protein stability and facilitate separation of immobilized proteins for repeated use. Herein, we exploited the efficient SpyTag-SpyCatcher chemistry for conjugation of functional proteins onto MNPs and established a robust magnetic-responsive nanoparticle platform for protein immobilization. To maximize the loading capacity and achieve outstanding water dispersity, the SpyTag peptide was incorporated into the surface-charged polymers of MNPs, which provided abundant active sites for Spy chemistry while maintaining excellent colloidal stability in buffer solution. Conjugation between enhanced green fluorescence protein (EGFP)-SpyCatcher-fused proteins and SpyTag-functionalized MNPs was efficient at ambient conditions without adding enzymes or chemical cross-linkers. Benefiting from the excellent water dispersity and interface compatibility, the surface Spy reaction has fast kinetics, which is comparable to that of the solution Spy reaction. No activity loss was observed on EGFP after conjugation due to the site-selective nature of Spy chemistry. The immobilization process of EGFP on MNPs was highly specific and robust, which was not affected by the presence of other proteins and detergents, such as bovine serum albumin and Tween 20. The MNP platform was demonstrated to be protective to the conjugated EGFP and significantly improved the shelf life of immobilized proteins. In addition, experiments confirmed the retained magnetophoresis of the MNP after protein loading, demonstrating fast MNP recovery under an external magnetic field. This MNP is expected to provide a versatile and modular platform to achieve effective and specific immobilization of other functional proteins, enabling easy reuse and storage.


Asunto(s)
Proteínas Fluorescentes Verdes/química , Proteínas Inmovilizadas/química , Nanopartículas de Magnetita/química , Secuencia de Aminoácidos , Fenómenos Magnéticos , Metacrilatos/química , Nylons/química , Péptidos/química , Dióxido de Silicio/química
9.
World J Stem Cells ; 13(11): 1647-1666, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34909116

RESUMEN

Regenerative endodontics (RE) therapy means physiologically replacing damaged pulp tissue and regaining functional dentin-pulp complex. Current clinical RE procedures recruit endogenous stem cells from the apical papilla, periodontal tissue, bone marrow and peripheral blood, with or without application of scaffolds and growth factors in the root canal space, resulting in cementum-like and bone-like tissue formation. Without the involvement of dental pulp stem cells (DPSCs), it is unlikely that functional pulp regeneration can be achieved, even though acceptable repair can be acquired. DPSCs, due to their specific odontogenic potential, high proliferation, neurovascular property, and easy accessibility, are considered as the most eligible cell source for dentin-pulp regeneration. The regenerative potential of DPSCs has been demonstrated by recent clinical progress. DPSC transplantation following pulpectomy has successfully reconstructed neurovascularized pulp that simulates the physiological structure of natural pulp. The self-renewal, proliferation, and odontogenic differentiation of DPSCs are under the control of a cascade of transcription factors. Over recent decades, epigenetic modulations implicating histone modifications, DNA methylation, and noncoding (nc)RNAs have manifested as a new layer of gene regulation. These modulations exhibit a profound effect on the cellular activities of DPSCs. In this review, we offer an overview about epigenetic regulation of the fate of DPSCs; in particular, on the proliferation, odontogenic differentiation, angiogenesis, and neurogenesis. We emphasize recent discoveries of epigenetic molecules that can alter DPSC status and promote pulp regeneration through manipulation over epigenetic profiles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA