Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Environ Sci Technol ; 57(32): 12010-12018, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37506359

RESUMEN

Determination of microplastics and nanoplastics (MNPs), especially small MPs and NPs (<150 µm), in solid environmental matrices is a challenging task due to the formation of stable aggregates between MNPs and natural colloids. Herein, a novel method for extracting small MPs and NPs embedded in soils/sediments/sludges has been developed by combining tetramethylammonium hydroxide (TMAH) digestion with dichloromethane (DCM) dissolution. The solid samples were digested with TMAH, and the collected precipitate was washed with anhydrous ethanol to eliminate the natural organic matter. Then, the MNPs in precipitate were extracted by dissolving in DCM under ultrasonic conditions. Under the optimized digestion and extraction conditions, the factors including sizes and concentrations of MNPs showed insignificant effects on the extraction process. The feasibility of this sample preparation method was verified by the satisfactory spiked recoveries (79.6-91.4%) of polystyrene, polyethylene, polypropylene, poly(methyl methacrylate), polyvinyl chloride, and polyethylene terephthalate MNPs in soil/sediment/sludge samples. The proposed sample preparation method was coupled with pyrolysis gas chromatography-mass spectrometry to determine trace small MPs and NPs with a relatively low detection limit of 2.3-29.2 µg/g. Notably, commonly used MNPs were successfully detected at levels of 4.6-51.4 µg/g in 6 soil/sediment/sludge samples. This proposed method is promising for evaluating small solid-embedded MNP pollution.


Asunto(s)
Microplásticos , Plásticos , Plásticos/análisis , Cromatografía de Gases y Espectrometría de Masas , Aguas del Alcantarillado/química , Cloruro de Metileno/análisis , Solubilidad , Suelo/química , Digestión
2.
Environ Sci Technol ; 57(29): 10754-10762, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37428629

RESUMEN

Plastic has been demonstrated to release nanoplastics (NPs) into the atmosphere under sunlight irradiation, posing a continuous health risk to the respiratory system. However, due to lack of reliable quantification methods, the occurrence and distribution of NPs in the atmosphere remain unclear. Polystyrene (PS) micro- and nanoplastics (MNPs) represent a crucial component of atmospheric MNPs. In this study, we proposed a simple and robust method for determining the concentration of atmospheric PS NPs using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). Following active sampling, the filter membrane is directly ground and introduced into the Py-GC/MS system to quantify PS NPs. The proposed method demonstrates excellent reproducibility and high sensitivity, with a detection limit as low as down to 15 pg/m3 for PS NPs. By using this method, the occurrence of PS NPs in both indoor and outdoor atmospheres has been confirmed. Furthermore, the results showed that the abundance of outdoor PS NPs was significantly higher than that of indoor samples, and there was no significant difference in NP vertical distribution within a height of 28.6 m. This method can be applied for the routine monitoring of atmospheric PS NPs and for evaluating their risk to human health.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Humanos , Poliestirenos , Microplásticos , Cromatografía de Gases y Espectrometría de Masas , Pirólisis , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/análisis , Nanopartículas/química
3.
J Environ Sci (China) ; 128: 45-54, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36801041

RESUMEN

The removal of iodide (I-) from source waters is an effective strategy to minimize the formation of iodinated disinfection by-products (DBPs), which are more toxic than their brominated and chlorinated analogues. In this work, a nanocomposite Ag-D201 was synthesized by multiple in situ reduction of Ag-complex in D201 polymer matrix, to achieve highly efficient removal of iodide from water. Scanning electron microscope /energy dispersive spectrometer characterization showed that uniform cubic silver nanoparticles (AgNPs) evenly dispersed in the D201 pores. The equilibrium isotherms data for iodide adsorption onto Ag-D201 was well fitted with Langmuir isotherm with the adsorption capacity of 533 mg/g at neutral pH. The adsorption capacity of Ag-D201 increased with the decrease of pH in acidic aqueous solution, and reached the maximum value of 802 mg/g at pH 2. This was attributed to the oxidization of I-, by dissolved oxygen under the catalysis of AgNPs, to I2 which was finally adsorbed as AgI3. However, the aqueous solutions at pH 7 - 11 could hardly affect the iodide adsorption. The adsorption of I- was barely affected by real water matrixes such as competitive anions (SO42-, NO3-, HCO3-, Cl-) and natural organic matter, of which interference of NOM was offset by the presence of Ca2+. The proposed synergistic mechanism for the excellent performance of iodide adsorption by the absorbent was ascribed to the Donnan membrane effect caused by the D201 resin, the chemisorption of I- by AgNPs, and the catalytic effect of AgNPs.


Asunto(s)
Nanopartículas del Metal , Contaminantes Químicos del Agua , Agua , Yoduros , Poliestirenos , Plata , Nanopartículas del Metal/química , Contaminantes Químicos del Agua/química , Adsorción
4.
Anal Chem ; 94(47): 16328-16336, 2022 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-36378246

RESUMEN

Application of selenium nanoparticle (SeNP)-based fertilizers results in the release of SeNPs to aquatic systems, where SeNPs may transform into inorganic selenite (Se(IV)) and selenate (Se(VI)) with higher toxicity. However, methods for the speciation analysis of different Se species are lacking, hindering the accurate assessment of the risks of SeNPs. Herein, for the first time, a Triton X-45 (TX-45)-based dual-cloud point extraction (CPE) method was established for the selective determination of SeNPs, Se(IV), and Se(VI) in water. TX-45 can adsorb on the surface of SeNPs and facilitate the extraction of SeNPs into the lower TX-45-rich phase in the first CPE, while Se(VI) and Se(IV) retain in the upper aqueous phase. In the second CPE, Se(IV) can selectively associate with diethyldithiocarbamate and be concentrated in the TX-45-rich phase, whereas Se(VI) remains in the upper phase. Different Se species can be isolated and then quantified by ICP-MS. The presence of coexisting ions and dissolved organic matter (0-30 mg C/L) did not interfere with extraction and separation. The feasibility of the presented method was confirmed by the analysis of natural water samples, with a detection limit of 0.03 µg/L and recoveries in the ranges of 61.1-104, 65.5-113, and 80.3-131% for SeNPs, Se(IV), and Se(VI), respectively. This study aims to provide an effective method to track the fate and transformation of SeNPs in aquatic systems and further contribute to estimating the potential risks of SeNPs to environmental organisms and human bodies.


Asunto(s)
Nanopartículas , Selenio , Humanos , Selenio/análisis , Ditiocarba , Octoxinol , Agua
5.
Anal Chem ; 94(2): 740-747, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34974702

RESUMEN

The global pollution of micro- and nano-plastics (MNPs) calls for monitoring methods. As diverse mixtures of various sizes, morphologies, and chemical compositions in the environment, MNPs are currently quantified based on mass or number concentrations. Here, we show total organic carbon (TOC) as an index for quantifying the pollution of total MNPs in environmental waters. Two parallel water samples are respectively filtered with a carbon-free glass fiber membrane. Then, one membrane with the collected particulate substances is treated by potassium peroxodisulfate oxidation and Fenton digestion in sequence for quantifying the sum of MNPs and particulate black carbon (PBC) as TOCMNP&PBC using a TOC analyzer, another membrane is treated by sulfonation and Fenton digestion for quantifying PBC as TOCPBC, and the TOC of MNPs is calculated by subtracting TOCPBC from TOCMNP&PBC. The feasibility of our method is demonstrated by determination of various MNPs of representative plastic types and sizes (0.5-100 µm) in tap, river, and sea water samples, with low detection limits (∼7 µg C L-1) and high spiked recoveries (83.7-114%). TOC is a powerful index for routine monitoring of MNP pollution.


Asunto(s)
Plásticos , Contaminantes Químicos del Agua , Carbono , Monitoreo del Ambiente , Contaminación Ambiental , Microplásticos , Ríos , Contaminantes Químicos del Agua/análisis
6.
Environ Sci Technol ; 56(12): 8255-8265, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35652387

RESUMEN

Although nanoplastics (NPs) are recognized as emerging anthropogenic particulate pollutants, the occurrence of NPs in the environment is rarely reported, partly due to the lack of sensitive methods for the concentration and detection of NPs. Herein, we present an efficient method for enriching NPs of different compositions and various sizes. Alkylated ferroferric oxide (Fe3O4) particles were prepared as adsorbents for highly efficient capture of NPs in environmental waters, and the formed large Fe3O4-NP agglomerates were separated by membrane filtration. Detection limits of 0.02-0.03 µg/L were obtained for polystyrene (PS) and poly(methyl methacrylate) (PMMA) NPs by detection with pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS). When analyzing real water samples from different sources, it is remarkable that PS NPs were detected in 11 out of 15 samples with concentrations ranging from <0.07 to 0.73 µg/L, while PMMA were not detected. The wide detection of PS NPs in our study confirms the previous speculation that NPs may be ubiquitous in the environmental waters. The accurate quantification of PS NPs in environmental waters make it possible to monitor the pollution status of NPs in aquatic systems and evaluate their potential risks.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Cromatografía de Gases y Espectrometría de Masas , Nanopartículas/química , Óxidos , Polimetil Metacrilato/análisis , Poliestirenos , Pirólisis , Contaminantes Químicos del Agua/química
7.
Environ Sci Technol ; 56(24): 17694-17701, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36480640

RESUMEN

Nanoplastics (NPs) have been successively detected in different environmental matrixes and have aroused great concern worldwide. However, the fate of NPs in real environments such as seawater remains unclear, impeding their environmental risk assessment. Herein, multiple techniques were employed to monitor the particle number concentration, size, and morphology evolution of polystyrene NPs in seawater under simulated sunlight over a time course of 29 days. Aggregation was found to be a continuous process that occurred constantly and was markedly promoted by light irradiation. Moreover, the occurrence of NP swelling, fragmentation, and polymer leaching was evidenced by both transmission electron microscopy and scanning electron microscopy techniques. The statistical results of different transformation types suggested that swelling induces fragmentation and polymer leakage and that light irradiation plays a positive but not decisive role in this transformation. The observation of fragmentation and polymer leakage of poly(methyl methacrylate) and poly(vinyl chloride) NPs suggests that these transformation processes are general for NPs of different polymer types. Facilitated by the increase of surface functional groups, the ions in seawater could penetrate into NPs and then stretch the polymer structure, leading to the swelling phenomenon and other transformations.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Microplásticos , Polímeros , Agua de Mar/química , Poliestirenos , Contaminantes Químicos del Agua/análisis
8.
Anal Chem ; 93(32): 11184-11190, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34347439

RESUMEN

Determination of particulate black carbon (PBC) in the environment is of great importance but faces a new challenge due to the increasing occurrence of coexisting microplastics (MPs), which are an emerging contaminant with properties very similar to those of PBC and cannot be discriminated in the chemical digestion procedure of the reported PBC analysis method. Herein, a comprehensive method has been developed for accurately determining PBC by digestive elimination of the coexisting MPs and other non-black carbon organic matter. Water samples were filtered with a glass fiber membrane (0.3 µm pore size), and the collected substances with the membrane were subjected to sulfonation with chlorosulfonic acid and Fenton digestion in sequence and then to the total organic carbon analyzer for quantification of PBC. Under the optimized conditions, MPs of various sizes and polymer types were efficiently eliminated (>91.0%), whereas various PBC samples were undigested with recoveries over 91.7% except for the relatively low recovery of 65.6% for the PBC prepared at a low pyrolysis temperature of 400 °C. The feasibility of the proposed method was verified by analysis of real water samples with a spike recovery of 88.6-100.2%. We anticipate that this work will pave an avenue for reliable determination of PBC in the presence of MPs.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Carbono , Monitoreo del Ambiente , Plásticos , Contaminantes Químicos del Agua/análisis
9.
Anal Chem ; 93(10): 4559-4566, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33646744

RESUMEN

Respective detection of microplastics (MPs) and nanoplastics (NPs) is of great importance for their different environmental behaviors and toxicities. Using spherical polystyrene (PS) and poly(methyl methacrylate) (PMMA) plastics as models, the efficiency for sequential isolation of MPs and NPs by membrane filtration and cloud-point extraction was evaluated. After filtering through a glass membrane (1 µm pore size), over 90.7% of MPs were trapped on the membrane, whereas above 93.0% of NPs remained in the filtrate. The collected MPs together with the glass membrane were frozen in liquid nitrogen, ground, and suspended in water (1 mL) and subjected to pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) determination. The NPs in the filtrate were concentrated by cloud-point extraction, heated at 190 °C to degrade the extractant, and then determined by Py-GC/MS. For MPs and NPs spiked in pure water, the method detection limits are in the range of 0.05-1.9 µg/L. The proposed method is applied to analyze four real water samples, with the detection of 1.6-7.6 µg/L PS MPs and 0.6 µg/L PMMA MPs in three samples, and spiked recoveries of 75.0-102% for MPs and 67.8-87.2% for NPs. Our method offers a novel sample pretreatment approach for the respective determination of MPs and NPs.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Plásticos , Poliestirenos/análisis , Pirólisis , Contaminantes Químicos del Agua/análisis
10.
Environ Sci Technol ; 55(8): 4783-4791, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33752329

RESUMEN

The globally raising concern for nanoplastics (NPs) pollution calls for analytical methods for investigating their occurrence, fates, and effects. Counting NPs with sizes down to 50 nm in real environmental waters remains a great challenge. Herein, we developed a full method from sample pretreatment to quantitative detection for NPs in environmental waters. Various NPs of common plastic types and sizes (50-1200 nm) were successfully labeled by in situ growth of gold nanoparticles and counted by single particle inductively coupled plasma mass spectrometry. Sucrose density gradient centrifugation enables the isolation of gold-labeled NPs from homogeneously nucleated Au nanoparticles, enhancing the particle number detection limit to 4.6 × 108 NPs/L for 269 nm spherical polystyrene NPs. For real environmental water samples, the pretreatment of acid digestion with a mixture of 5 mM HNO3 and 40 mM HF eliminates the coexisting inorganic nanoparticles, while the following dual cloud-point extraction efficiently isolates NPs from various matrices and thus improves the Au-labeling efficiency. The high spiked recoveries (72.9%-92.8%) of NPs in different waters demonstrated the applicability of this method in different scenarios.


Asunto(s)
Oro , Nanopartículas del Metal , Espectrometría de Masas , Microplásticos , Tamaño de la Partícula , Plasma
11.
J Environ Sci (China) ; 94: 88-99, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32563491

RESUMEN

The degradation of plastic debris may result in the generation of nanoplastics (NPs). Their high specific surface area for the sorption of organic pollutions and toxic heavy metals and possible transfer between organisms at different nutrient levels make the study of NPs an urgent priority. However, there is very limited understanding on the occurrence, distribution, abundant, and fate of NPs in the environment, partially due to the lack of suitable techniques for the separation and identification of NPs from complex environmental matrices. In this review, we first overviewed the state-of-the-art methods for the extraction, separation, identification and quantification of NPs in the environment. Some of them have been successfully applied for the field determination of NPs, while some are borrowed from the detection of microplastics or engineered nanomaterials. Then the possible fate and transport of NPs in the environment are thoroughly described. Although great efforts have been made during the recent years, large knowledge gaps still exist, such as the relatively high detection limit of existing method failing to detect ultralow masses of NPs in the environment, and spherical polystyrene NP models failing to represent the various compositions of NPs with different irregular shapes, which needs further investigation.


Asunto(s)
Nanoestructuras , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Plásticos , Poliestirenos
12.
Environ Sci Technol ; 49(11): 6581-9, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-25941838

RESUMEN

Ubiquitous natural organic matter (NOM) plays an important role in the aggregation state of engineered silver nanoparticles (AgNPs) in aquatic environment, which determines the transport, transformation, and toxicity of AgNPs. As various capping agents are used as coatings for nanoparticles and NOM are natural polymer mixture with wide molecular weight (MW) distribution, probing the particle coating-dependent interaction of MW fractionated natural organic matter (Mf-NOM) with various coatings is helpful for understanding the differential aggregation and transport behavior of engineered AgNPs as well as other metal nanoparticles. In this study, we investigated the role of pristine and Mf-NOM on the aggregation of AgNPs with Bare, citrate, and PVP coating (Bare-, Cit-, and PVP-AgNP) in mono- and divalent electrolyte solutions. We observed that the enhanced aggregation or dispersion of AgNPs in NOM solution highly depends on the coating of AgNPs. Pristine NOM inhibited the aggregation of Bare-AgNPs but enhanced the aggregation of PVP-AgNPs. In addition, Mf-NOM fractions have distinguishing roles on the aggregation and dispersion of AgNPs, which also highly depend on the AgNPs coating as well as the MW of Mf-NOM. Higher MW Mf-NOM (>100 kDa and 30-100 kDa) enhanced the aggregation of PVP-AgNPs in mono- and divalent electrolyte solutions, whereas lower MW Mf-NOM (10-30 kDa, 3-10 kDa and <3 kDa) inhibited the aggregation of PVP-AgNPs. However, all the Mf-NOM fractions inhibited the aggregation of Bare-AgNPs. For PVP- and Bare-AgNPs, the stability of AgNPs in electrolyte solution was significantly correlated to the MW of Mf-NOM. But for Cit-AgNPs, pristine NOM and Mf-NOM has minor influence on the stability of AgNPs. These findings about significantly different roles of Mf-NOM on aggregation of engineered AgNPs with various coating are important for better understanding of the transport and subsequent transformation of AgNPs in aquatic environment.


Asunto(s)
Ácido Cítrico/química , Nanopartículas del Metal/química , Compuestos Orgánicos/análisis , Plata/química , Fraccionamiento Químico , Electrólitos/química , Peso Molecular , Tamaño de la Partícula , Povidona/química , Soluciones , Espectrofotometría Ultravioleta
13.
Environ Sci Technol ; 49(24): 14213-20, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26580982

RESUMEN

Hollow fiber supported liquid membrane (HFSLM) extraction was coupled with ICP-MS for speciation analysis of labile Ag(I) and total Ag(I) in dispersions of silver nanoparticles (AgNPs) and environmental waters. Ag(I) in aqueous samples was extracted into the HFSLM of 5%(m/v) tri-n-octylphosphine oxide in n-undecane, and stripped in the acceptor of 10 mM Na2S2O3 and 1 mM Cu(NO3)2 prepared in 5 mM NaH2PO4-Na2HPO4 buffer (pH 7.5). Negligible depletion and exhaustive extraction were conducted under static and 250 rpm shaking to extract the labile Ag(I) and total Ag(I), respectively. The extraction equilibration was reached in 8 h for both extraction modes. The extraction efficiency and detection limit were (2.97 ± 0.25)% and 0.1 µg/L for labile Ag(I), and (82.3 ± 2.0)% and 0.5 µg/L for total Ag(I) detection, respectively. The proposed method was applied to determine labile Ag(I) and total Ag(I) in different sized AgNP dispersions and real environmental waters, with spiked recoveries of total Ag(I) in the range of 74.0-98.1%. With the capability of distinguishing labile and total Ag(I), our method offers a new approach for evaluating the bioavailability and understanding the fate and toxicity of AgNPs in aquatic systems.


Asunto(s)
Extracción Líquido-Líquido/métodos , Nanopartículas del Metal/análisis , Plata/análisis , Contaminantes Químicos del Agua/análisis , China , Límite de Detección , Extracción Líquido-Líquido/instrumentación , Espectrometría de Masas/métodos , Membranas Artificiales , Nanopartículas del Metal/química , Compuestos Organofosforados/química , Tamaño de la Partícula
14.
J Environ Sci (China) ; 34: 116-25, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26257354

RESUMEN

The inevitable release of engineered silver nanoparticles (AgNPs) into aquatic environments has drawn great concerns about its environmental toxicity and safety. Although aggregation and transformation play crucial roles in the transport and toxicity of AgNPs, how the water chemistry of environmental waters influences the aggregation and transformation of engineered AgNPs is still not well understood. In this study, the aggregation of polyvinylpyrrolidone (PVP) coated AgNPs was investigated in eight typical environmental water samples (with different ionic strengths, hardness, and dissolved organic matter (DOM) concentrations) by using UV-visible spectroscopy and dynamic light scattering. Raman spectroscopy was applied to probe the interaction of DOM with the surface of AgNPs. Further, the photo-transformation and morphology changes of AgNPs in environmental waters were studied by UV-visible spectroscopy, inductively coupled plasma mass spectrometry, and transmission electron microscopy. The results suggested that both electrolytes (especially Ca(2+) and Mg(2+)) and DOM in the surface waters are key parameters for AgNP aggregation, and sunlight could accelerate the morphology change, aggregation, and further sedimentation of AgNPs. This water chemistry controlled aggregation and photo-transformation should have significant environmental impacts on the transport and toxicity of AgNPs in the aquatic environments.


Asunto(s)
Agua Dulce/química , Nanopartículas del Metal/química , Plata/química , Contaminantes Químicos del Agua/química , Sustancias Húmicas/análisis , Iones/análisis , Fotólisis , Povidona/análisis , Luz Solar , Propiedades de Superficie
15.
Environ Sci Technol ; 48(1): 403-11, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24328224

RESUMEN

The fast growing and abundant use of silver nanoparticles (AgNPs) in commercial products alerts us to be cautious of their unknown health and environmental risks. Because of the inherent redox instability of silver, AgNPs are highly dynamic in the aquatic system, and the cycle of chemical oxidation of AgNPs to release Ag(+) and reconstitution to form AgNPs is expected to occur in aquatic environments. This study investigated how inevitable environmentally relevant factors like sunlight, dissolved organic matter (DOM), pH, Ca(2+)/Mg(2+), Cl(-), and S(2-) individually or in combination affect the chemical transformation of AgNPs. It was demonstrated that simulated sunlight induced the aggregation of AgNPs, causing particle fusion or self-assembly to form larger structures and aggregates. Meanwhile, AgNPs were significantly stabilized by DOM, indicating that AgNPs may exist as single particles and be suspended in natural water for a long time or delivered far distances. Dissolution (ion release) kinetics of AgNPs in sunlit DOM-rich water showed that dissolved Ag concentration increased gradually first and then suddenly decreased with external light irradiation, along with the regeneration of new tiny AgNPs. pH variation and addition of Ca(2+) and Mg(2+) within environmental levels did not affect the tendency, showing that this phenomenon was general in real aquatic systems. Given that a great number of studies have proven the toxicity of dissolved Ag (commonly regarded as the source of AgNP toxicity) to many aquatic organisms, our finding that the effect of DOM and sunlight on AgNP dissolution can regulate AgNP toxicity under these conditions is important. The fact that the release of Ag(+) and regeneration of AgNPs could both happen in sunlit DOM-rich water implies that previous results of toxicity studies gained by focusing on the original nature of AgNPs should be reconsidered and highlights the necessity to monitor the fate and toxicity of AgNPs under more environmentally relevant conditions.


Asunto(s)
Nanopartículas del Metal/química , Povidona/química , Plata/química , Contaminantes Químicos del Agua/química , Calcio/química , Cloruros/química , Magnesio/química , Nanopartículas del Metal/efectos de la radiación , Oxidación-Reducción , Povidona/efectos de la radiación , Plata/efectos de la radiación , Sulfuros/química , Luz Solar , Contaminantes Químicos del Agua/efectos de la radiación
16.
STAR Protoc ; 5(2): 103104, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38861383

RESUMEN

Approaches for detecting micro(nano)plastics (MNPs) released from intravenous infusion products (IVIPs) are vital for evaluating the safety of both IVIPs and their derived MNPs on human health, yet current understanding is limited. Here, we present a protocol for detecting polyvinyl chloride (PVC) MNPs by combining Raman spectroscopy, scanning electron microscopy equipped with energy-dispersive X-ray spectroscopy (SEM-EDS), and pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS). We describe steps for collecting, pretreating, and measuring PVC MNPs released from IVIPs. For complete details on the use and execution of this protocol, please refer to Li et al.1.


Asunto(s)
Espectrometría Raman , Espectrometría Raman/métodos , Infusiones Intravenosas , Cromatografía de Gases y Espectrometría de Masas/métodos , Cloruro de Polivinilo/química , Humanos , Microscopía Electrónica de Rastreo/métodos , Espectrometría por Rayos X/métodos , Plásticos/química
17.
Environ Sci Technol ; 47(7): 3268-74, 2013 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-23458171

RESUMEN

The toxic mechanism of silver nanoparticles (AgNPs) is still debating, partially because of the common co-occurrence and the lack of methods for separation of AgNPs and Ag(+) in biological matrices. For the first time, Triton-X 114-based cloud point extraction (CPE) was proposed to separate AgNPs and Ag(+) in the cell lysates of exposed HepG2 cells. Cell lysates were subjected to CPE after adding Na2S2O3, which facilitated the transfer of AgNPs into the nether Triton X-114-rich phase by salt effect and the preserve of Ag(+) in the upper aqueous phase through the formation of hydrophilic complex. Then the AgNP and Ag(+) contents in the exposed cells were determined by ICP-MS after microwave digestion of the two phases, respectively. Under the optimized conditions, over 67% of AgNPs in cell lysates were extracted into the Triton X-114-rich phase while 94% of Ag(+) remained in the aqueous phase, and the limits of detection for AgNPs and Ag(+) were 2.94 µg/L and 2.40 µg/L, respectively. This developed analytical method was applied to quantify the uptake of AgNPs to the HepG2 cells. After exposure to 10 mg/L AgNPs for 24 h, about 67.8 ng Ag were assimilated per 10(4) cells, in which about 10.3% silver existed as Ag(+). Compared to the pristine AgNPs (with 5.2% Ag(+)) for exposure, the higher ratio of Ag(+) to AgNPs in the exposed cells (10.3% Ag(+)) suggests the transformation of AgNPs into Ag(+) in the cells and/or the higher uptake rate of Ag(+) than that of AgNPs. Given that the toxicity of Ag(+) is much higher than that of AgNPs, the substantial content of Ag(+) in the exposed cells suggests that the contribution of Ag(+) should be taken into account in evaluating the toxicity of AgNPs to organisms, and previous results obtained by regarding the total Ag content in organisms as AgNPs should be reconsidered.


Asunto(s)
Nanopartículas del Metal/química , Plata/metabolismo , Extractos Celulares , Células Hep G2 , Humanos , Concentración de Iones de Hidrógeno/efectos de los fármacos , Iones/metabolismo , Nanopartículas del Metal/ultraestructura , Octoxinol , Polietilenglicoles/farmacología , Plata/aislamiento & purificación , Sonicación , Tiosulfatos/farmacología , Factores de Tiempo
18.
Sci Total Environ ; 834: 155427, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35469889

RESUMEN

Water pollution by toxic heavy metals poses a threat to the environment and human bodies. Herein, a novel hydrated ferric oxide nanoparticle (HFO) based hybrid adsorbent was fabricated for the removal of toxic Cu(II), Cd(II) and Pb(II) from water. HFOs were immobilized into a porous resin D-201, and then this nanocomposite HFO-D201 was coated with humic acid (HA) to enhance the binding sites of target metals. Both HFOs and HA contribute to the sequestration of heavy metals. The as-synthesized hybrid adsorbent HA-HFO-D201 exhibited excellent performance on the removal of Cu(II), Cd(II), and Pb(II) in a pH range of 3-9, while no Fe leaching was observed. The presence of natural organic matter (20 mg C/L) has limited influences on the adsorption, and more than 85% of the target metals can be removed after treatment. HA-HFO-D201 showed preferable adsorption toward Cu(II) and Pb(II) (1 mg/L) from the background Ca2+ solution at much higher concentrations (100 mg/L), while the retention of Cd(II) (1 mg/L) decreased to some extent. Fixed-bed column experiments exhibited that the treatment capacities of HA-HFO-D201 are 90 bed volumes (BV) for Cd(II), 410 BV for Pb(II) and > 800 BV for Cu(II) of simulated contaminated water to meet the WHO drinking water standard. Meanwhile, depleted HA-HFO-D201 can be readily regenerated by a chelating agent Na2EDTA for repeated use. The hybrid adsorbent HA-HFO-D201 has excellent potential to remove heavy metals in water treatment systems.


Asunto(s)
Metales Pesados , Nanocompuestos , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Cadmio , Compuestos Férricos , Humanos , Sustancias Húmicas , Plomo , Óxidos , Polímeros/química , Contaminantes Químicos del Agua/análisis
19.
J Chromatogr A ; 1682: 463503, 2022 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-36152483

RESUMEN

Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) has been widely used for the detection of micro- and nanoplastics (MNPs) in the environment. However, there is a lack of thorough investigation on the effects of pyrolysis temperature and time, as well as the particle source, size and mass of MNPs on the pyrolysis efficiency and pyrolysis product distribution of MNPs. Herein, taking the common plastics polystyrene (PS) as a model, we systematically evaluated the influences of the above factors on the pyrolysis of PS MNPs. Results showed that pyrolysis temperature and time significantly affect the pyrolysis efficiency. By measuring the relative response values of the indicator compound styrene trimers to styrene monomer, the optimum condition was determined as the temperature of 510 â„ƒ and pyrolysis time longer than 18 s. Meanwhile, the mass of MNPs also affected the distribution of PS pyrolysis products. The proportions of styrene dimers and trimers increased slightly with PS MNP mass, while the source, particle size of MNPs have little effect on the pyrolysis product distribution. This work proposed a suitable pyrolysis temperature and time for the determination of PS by Py-GC/MS, which would contribute to the accurate analysis of PS MNPs in the environment.


Asunto(s)
Poliestirenos , Pirólisis , Calefacción , Microplásticos , Poliestirenos/química , Temperatura
20.
Anal Chem ; 83(17): 6875-82, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21797201

RESUMEN

The rapid growth in commercial use of silver nanoparticles (AgNPs) will inevitably increase silver exposure in the environment and the general population. As the fate and toxic effects of AgNPs is related to the Ag(+) released from AgNPs and the transformation of Ag(+) into AgNPs, it is of great importance to develop methods for speciation analysis of AgNPs and Ag(+). This study reports the use of Triton X-114-based cloud point extraction as an efficient separation approach for the speciation analysis of AgNPs and Ag(+) in antibacterial products and environmental waters. AgNPs were quantified by determining the Ag content in the Triton X-114-rich phase with inductively coupled plasma mass spectrometry (ICPMS) after microwave digestion. The concentration of total Ag(+), which consists of the AgNP adsorbed, the matrix associated, and the freely dissolved, was obtained by subtracting the AgNP content from the total silver content that was determined by ICPMS after digestion. The limits of quantification (S/N = 10) for antibacterial products were 0.4 µg/kg and 0.2 µg/kg for AgNPs and total silver, respectively. The reliable quantification limit was 3 µg/kg for total Ag(+). The presence of Ag(+) at concentrations up to 2-fold that of AgNPs caused no effects on the determination of AgNPs. In the cloud point extraction of AgNPs in antibacterial products, the spiked recoveries of AgNPs were in the range of 71.7-103% while the extraction efficiencies of Ag(+) were in the range of 1.2-10%. The possible coextracted other silver containing nanoparticles in the cloud point extraction of AgNPs were distinguished by transmission electron microscopy (TEM), scanning electron microscopy (SEM)- energy dispersive spectroscopy (EDS), and UV-vis spectrum. Real sample analysis indicated that even though the manufacturers claimed nanosilver products, AgNPs were detected only in three of the six tested antibacterial products.


Asunto(s)
Antibacterianos/química , Espectrometría de Masas/métodos , Nanopartículas del Metal/análisis , Plata/análisis , Contaminantes Químicos del Agua/análisis , Antibacterianos/aislamiento & purificación , Iones/química , Iones/aislamiento & purificación , Nanopartículas del Metal/ultraestructura , Microondas , Octoxinol , Polietilenglicoles/química , Plata/aislamiento & purificación , Contaminantes Químicos del Agua/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA