Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Exp Cell Res ; 372(2): 158-167, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30268758

RESUMEN

Trio, the Rho guanine nucleotide exchange factor (Rho-GEF), plays diverse roles in cell migration, cell axon guidance and cytoskeleton reorganization. Conserved during evolution, Trio encodes two guanine nucleotide exchange factor domains (GEFs) and activates small GTPases. The Rho-family small GTPases RhoA and Rac1, which are target molecules of Trio, have been described to engage in craniofacial development and tooth formation. However, the exact role of Trio in tooth development remains elusive. In this study, we generated Wnt1-cre;Triofl/fl mice to address the potential function of Trio in tooth development. Wnt1-cre;Triofl/fl mice showed short root deformity as well as decreased expression of odontogenic makers such as RUNX2, OSX, OCN, and OPN. In vitro, Trio was silenced in human stem cells of dental papilla (SCAPs). Compared with the control group, the proliferation and migration ability in the experimental group was disrupted. After knocking down Trio in SCAPs, the cells showed phenotypes of poor odontogenic differentiation and weak mineralized nodules. To study the underlying mechanism, we investigated the p38 MAPK pathway and found that loss of Trio blocked the cascade transduction of p38 MAPK signaling. In conclusion, we identified Trio as a novel coordinator in regulating root development and clarified its relevant molecular events.


Asunto(s)
Factores de Intercambio de Guanina Nucleótido/genética , Odontogénesis/genética , Fosfoproteínas/genética , Proteínas Serina-Treonina Quinasas/genética , Raíz del Diente/crecimiento & desarrollo , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Animales , Diferenciación Celular/genética , Movimiento Celular/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Papila Dental/crecimiento & desarrollo , Papila Dental/metabolismo , Humanos , Ratones , Neuropéptidos/genética , Unión Proteica/genética , Transducción de Señal/genética , Células Madre/citología , Células Madre/metabolismo , Raíz del Diente/metabolismo , Proteína de Unión al GTP rac1/genética , Proteínas de Unión al GTP rho/genética , Proteína de Unión al GTP rhoA
2.
Biomater Adv ; 137: 212853, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35929281

RESUMEN

Anodic titanium dioxide nanotubes (TNT) have a range of beneficial theranostic properties. However, a lack of effective osseointegration is a problem frequently associated with the titanium dental implant surface. Here, we investigated whether bone-shaped nanotube titanium implants could enhance osseointegration via promoting initial release of vascular endothelial growth factor 165 (VEGF165) and dual release of recombinant human bone morphogenetic protein-2 (rhBMP-2). Thus, we generated cylindrical-shaped nanotubes (TNT1) and bone-shaped nanotubes (TNT2) through voltage-varying and time-varying electrochemical anodization methods, respectively. Additionally, we prepared rhBMP-2-loaded cylindrical-shaped nanotubes/VEGF165-loaded hydrogel (TNT-F1) and rhBMP-2-loaded bone-shaped nanotubes/VEGF165-loaded hydrogel (TNT-F2) drug delivery systems. We evaluated the characteristics and release kinetics of the drug delivery systems, and then analyzed the cytocompatibility and osteogenic differentiation of these specimens with mesenchymal stem cells (MSCs) in vitro. Finally, we utilized a rat femur defect model to test the bone formation capacity of nanotube-hydrogel drug delivery system in vivo. Among these different nanotubes structures, the bone-shaped one was the optimum structure for growth factor release.


Asunto(s)
Nanotubos , Oseointegración , Animales , Sistemas de Liberación de Medicamentos , Humanos , Hidrogeles/farmacología , Nanotubos/química , Osteogénesis , Ratas , Titanio/farmacología , Factor A de Crecimiento Endotelial Vascular/farmacología
3.
Microsc Res Tech ; 85(4): 1518-1526, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34964200

RESUMEN

Titanium (Ti) alloys, particularly Ti6 Al4 V, are the most commonly used biomedical implant material. Ti alloys are biologically inert, so there have been continuous efforts to improve their osteogenic properties and clinical performance. Since TiO2 nanotubes (NT) appear to be excellent drug platforms, and strontium reportedly enhances osteogenesis, we constructed a TiO2 nanotube coating on the surface of Ti6 Al4 V and immersed it in Sr (OH)2 solution in order to incorporate Sr into TiO2 nanotubes (NT-Sr). The results of field emission scanning electron microscope and X-ray diffraction analysis verified the fabrication of NT-Sr. We next added polydopamine (PDA) and cyclo- (arginine-glycine-aspartic acid-phenylalanine-cysteine) [c(RGDfC)] peptides to further promote biocompatibility of the implant. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the existence of PDA and c(RGDfC). Mesenchymal stem cells (MSCs) were planted on Ti, NT, NT-Sr, NT-Sr/PDA, and NT-Sr/PDA-RGD surfaces. The adhesion and differentiation of MSCs on different surfaces were evaluated. The mRNA expression of alkaline phosphatase, runt-related transcription factor 2 (Runx2) and type I collagen (Col I) of different groups were also tested. Finally, we observed that the NT-Sr/PDA-RGD group showed significantly better performance than other groups in terms of the differentiation and osteogenesis-related gene expression of MSCs. Thus, the NT-Sr/PDA-RGD complex may be an important modification strategy for Ti, as it shows excellent osteogenic potential.


Asunto(s)
Nanotubos , Osteogénesis , Aleaciones/farmacología , Arginina , Ácido Aspártico , Glicina , Indoles , Nanotubos/química , Polímeros , Estroncio/química , Estroncio/farmacología , Propiedades de Superficie , Titanio/química , Titanio/farmacología
4.
Theranostics ; 11(9): 4316-4334, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33754063

RESUMEN

Trio is a unique member of the Rho-GEF family that has three catalytic domains and is vital for various cellular processes in both physiological and developmental settings. TRIO mutations in humans are involved in craniofacial abnormalities, in which patients present with mandibular retrusion. However, little is known about the molecular mechanisms of Trio in neural crest cell (NCC)-derived craniofacial development, and there is still a lack of direct evidence to assign a functional role to Trio in NCC-induced craniofacial abnormalities. Methods:In vivo, we used zebrafish and NCC-specific knockout mouse models to investigate the phenotype and dynamics of NCC development in Trio morphants. In vitro, iTRAQ, GST pull-down assays, and proximity ligation assay (PLA) were used to explore the role of Trio and its potential downstream mediators in NCC migration and differentiation. Results: In zebrafish and mouse models, disruption of Trio elicited a migration deficit and impaired the differentiation of NCC derivatives, leading to craniofacial growth deficiency and mandibular retrusion. Moreover, Trio positively regulated Myh9 expression and directly interacted with Myh9 to coregulate downstream cellular signaling in NCCs. We further demonstrated that disruption of Trio or Myh9 inhibited Rac1 and Cdc42 activity, specifically affecting the nuclear export of ß-catenin and NCC polarization. Remarkably, craniofacial abnormalities caused by trio deficiency in zebrafish could be partially rescued by the injection of mRNA encoding myh9, ca-Rac1, or ca-Cdc42. Conclusions: Here, we identified that Trio, interacting mostly with Myh9, acts as a key regulator of NCC migration and differentiation during craniofacial development. Our results indicate that trio morphant zebrafish and Wnt1-cre;Triofl/fl mice offer potential model systems to facilitate the study of the pathogenic mechanisms of Trio mutations causing craniofacial abnormalities.


Asunto(s)
Cadenas Pesadas de Miosina/genética , Cresta Neural/fisiología , Animales , Diferenciación Celular/genética , Línea Celular , Movimiento Celular/genética , Embrión de Mamíferos/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Fenotipo , ARN Mensajero/genética , Transducción de Señal/genética , Pez Cebra , beta Catenina/genética
5.
Int J Biol Sci ; 17(15): 4238-4253, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34803495

RESUMEN

Background: Congenital anomalies are increasingly becoming a global pediatric health concern, which requires immediate attention to its early diagnosis, preventive strategies, and efficient treatments. Guanine nucleotide binding protein, alpha inhibiting activity polypeptide 3 (Gnai3) gene mutation has been demonstrated to cause congenital small jaw deformity, but the functions of Gnai3 in the disease-specific microRNA (miRNA) upregulations and their downstream signaling pathways during osteogenesis have not yet been reported. Our previous studies found that the expression of Mir24-2-5p was significantly downregulated in the serum of young people with overgrowing mandibular, and bioinformatics analysis suggested possible binding sites of Mir24-2-5p in the Gnai3 3'UTR region. Therefore, this study was designed to investigate the mechanism of Mir24-2-5p-mediated regulation of Gnai3 gene expression and explore the possibility of potential treatment strategies for bone defects. Methods: Synthetic miRNA mimics and inhibitors were transduced into osteoblast precursor cells to regulate Mir24-2-5p expression. Dual-luciferase reporter assay was utilized to identify the direct binding of Gnai3 and its regulator Mir24-2-5p. Gnai3 levels in osteoblast precursor cells were downregulated by shRNA (shGnai3). Agomir, Morpholino Oligo (MO), and mRNA were microinjected into zebrafish embryos to control mir24-2-5p and gnai3 expression. Relevant expression levels were determined by the qRT-PCR and Western blotting. CCK-8 assay, flow cytometry, and transwell migration assays were performed to assess cell proliferation, apoptosis, and migration. ALP, ARS and Von Kossa staining were performed to observe osteogenic differentiation. Alcian blue staining and calcein immersions were performed to evaluate the embryonic development and calcification of zebrafish. Results: The expression of Mir24-2-5p was reduced throughout the mineralization process of osteoblast precursor cells. miRNA inhibitors and mimics were transfected into osteoblast precursor cells. Cell proliferation, migration, osteogenic differentiation, and mineralization processes were measured, which showed a reverse correlation with the expression of Mir24-2-5p. Dual-luciferase reporter gene detection assay confirmed the direct interaction between Mir24-2-5p and Gnai3 mRNA. Moreover, in osteoblast precursor cells treated with Mir24-2-5p inhibitor, the expression of Gnai3 gene was increased, suggesting that Mir24-2-5p negatively targeted Gnai3. Silencing of Gnai3 inhibited osteoblast precursor cells proliferation, migration, osteogenic differentiation, and mineralization. Promoting effects of osteoblast precursor cells proliferation, migration, osteogenic differentiation, and mineralization by low expression of Mir24-2-5p was partially rescued upon silencing of Gnai3. In vivo, mir24-2-5p Agomir microinjection into zebrafish embryo resulted in shorter body length, smaller and retruded mandible, decreased cartilage development, and vertebral calcification, which was partially rescued by microinjecting gnai3 mRNA. Notably, quite similar phenotypic outcomes were observed in gnai3 MO embryos, which were also partially rescued by mir24-2-5p MO. Besides, the expression of phospho-JNK (p-JNK) and p-p38 were increased upon Mir24-2-5p inhibitor treatment and decreased upon shGnai3-mediated Gnai3 downregulation in osteoblast precursor cells. Osteogenic differentiation and mineralization abilities of shGnai3-treated osteoblast precursor cells were promoted by p-JNK and p-p38 pathway activators, suggesting that Gnai3 might regulate the differentiation and mineralization processes in osteoblast precursor cells through the MAPK signaling pathway. Conclusions: In this study, we investigated the regulatory mechanism of Mir24-2-5p on Gnai3 expression regulation in osteoblast precursor cells and provided a new idea of improving the prevention and treatment strategies for congenital mandibular defects and mandibular protrusion.


Asunto(s)
Diferenciación Celular/fisiología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/antagonistas & inhibidores , MAP Quinasa Quinasa 4/metabolismo , MicroARNs/metabolismo , Osteoblastos/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Regulación de la Expresión Génica/fisiología , MAP Quinasa Quinasa 4/genética , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Imitación Molecular , ARN/química , ARN/farmacología , Transducción de Señal , Regulación hacia Arriba , Pez Cebra , Proteínas Quinasas p38 Activadas por Mitógenos/genética
6.
Int J Mol Med ; 43(1): 382-392, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30431055

RESUMEN

Odonto/osteogenic differentiation of stem cells from the apical papilla (SCAPs) is a key process in tooth root formation and development. However, the molecular mechanisms underlying this process remain largely unknown. In the present study, it was identified that guanine and nucleotide binding protein 3 (GNAI3) was at least in part responsible for the odonto/osteogenic differentiation of SCAPs. GNAI3 was markedly induced in mouse tooth root development in vivo and in human SCAPs mineralization in vitro. Notably, knockdown of GNAI3 by lentiviral vectors expressing short­hairpin RNAs against GNAI3 significantly inhibited the proliferation, cell cycle progression and migration of SCAPs, as well as odonto/osteogenic differentiation of SCAPs in vitro, suggesting that GNAI3 may play an essential role in tooth root development. The promotive role of GNAI3 in odonto/osteogenic differentiation was further confirmed by downregulation of odonto/osteogenic makers in GNAI3­deficient SCAPs. In addition, knockdown of GNAI3 effectively suppressed activity of c­Jun N­terminal kinase (JNK) and extracellular­signal regulated kinase (ERK) signaling pathways that was induced during SCAPs differentiation, suggesting that GNAI3 promotes SCAPs mineralization at least partially via JNK/ERK signaling. Taken together, the present results implicate GNAI3 as a critical regulator of odonto/osteogenic differentiation of SCAPs in tooth root development, and suggest a possible role of GNAI3 in regeneration processes in dentin or other tissues.


Asunto(s)
Diferenciación Celular , Papila Dental/citología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Odontogénesis , Osteogénesis , Células Madre/enzimología , Animales , Antracenos/farmacología , Biomarcadores/metabolismo , Calcificación Fisiológica/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Odontogénesis/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Células Madre/citología , Células Madre/efectos de los fármacos , Raíz del Diente/embriología , Raíz del Diente/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
7.
J Mol Histol ; 48(5-6): 389-401, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28986711

RESUMEN

During tooth root development, stem cells from apical papillae (SCAPs) are indispensable, and their abilities of proliferation, migration and odontoblast differentiation are linked to root formation. Leucine-rich repeat-containing GPCR 4 (LGR4) modulates the biological processes of proliferation and differentiation in multiple stem cells. In this study, we showed that LGR4 is expressed in all odontoblast cell lineage cells and Hertwig's epithelial root sheath (HERS) during the mouse root formation in vivo. In vitro we determined that LGR4 is involved in the Wnt/ß-catenin signaling pathway regulating proliferation and odonto/osteogenic differentiation of SCAPs. Quantitative reverse-transcription PCR (qRT-PCR) confirmed that LGR4 is expressed during odontogenic differentiation of SCAPs. CCK8 assays and in vitro scratch tests, together with cell cycle flow cytometric analysis, demonstrated that downregulation of LGR4 inhibited SCAPs proliferation, delayed migration and arrested cell cycle progression at the S and G2/M phases. ALP staining revealed that blockade of LGR4 decreased ALP activity. QRT-PCR and Western blot analysis demonstrated that LGR4 silencing reduced the expression of odonto/osteogenic markers (RUNX2, OSX, OPN, OCN and DSPP). Further Western blot and immunofluorescence studies clarified that inhibition of LGR4 disrupted ß-catenin stabilization. Taken together, downregulation of LGR4 gene expression inhibited SCAPs proliferation, migration and odonto/osteogenic differentiation by blocking the Wnt/ß-catenin signaling pathway. These results indicate that LGR4 might play a vital role in SCAPs proliferation and odontoblastic differentiation.


Asunto(s)
Diferenciación Celular , Papila Dental/citología , Osteogénesis , Receptores Acoplados a Proteínas G/metabolismo , Células Madre/citología , Animales , Animales Recién Nacidos , Diferenciación Celular/genética , Movimiento Celular , Proliferación Celular , Forma de la Célula , Regulación hacia Abajo/genética , Silenciador del Gen , Humanos , Ratones , Morfogénesis , Odontogénesis/genética , Osteogénesis/genética , Estabilidad Proteica , ARN Interferente Pequeño/metabolismo , Células Madre/metabolismo , Raíz del Diente/citología , Raíz del Diente/crecimiento & desarrollo , Raíz del Diente/metabolismo , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA