Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Clin Periodontol ; 51(2): 233-250, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961757

RESUMEN

AIM: To investigate the relationship between interleukin-17 (IL-17), ferroptosis and osteogenic differentiation. MATERIALS AND METHODS: We first analysed the changes in ferroptosis-related molecules in experimental periodontitis models. The effects of erastin, a small-molecule ferroptosis inducer, and IL-17 on alveolar bone loss and repair in animal models were then investigated. Primary mouse mandibular osteoblasts were exposed to erastin and IL-17 in vitro. Ferroptosis- and osteogenesis-related genes and proteins were detected. Further, siRNA, immunofluorescence co-localization and immunoprecipitation were used to confirm the roles of the nuclear factor erythroid-2-related factor 2 (NRF2) and phosphorylated signal transducer and activator of transcription 3 (p-STAT3), as well as their interaction. RESULTS: The levels of NRF2, glutathione peroxidase 4 and solute carrier family 7 member 11 were lower in the ligated tissues than in normal periodontal tissues. Alveolar bone loss in an in vivo experimental periodontitis model was aggravated by erastin and alleviated by IL-17. In vitro, IL-17 ameliorated erastin-inhibited osteogenic differentiation by reversing ferroptosis. Altered NRF2 expression correlated with changes in ferroptosis-related molecules and osteogenesis. Furthermore, the physical interaction between NRF2 and p-STAT3 was confirmed in the nucleus. In IL-17 + erastin-stimulated osteoblasts, the p-STAT3-NRF2 complex might actively participate in the downstream transcription of ferroptosis- and osteogenesis-related genes. CONCLUSIONS: IL-17 administration conferred resistance to erastin-induced osteoblast ferroptosis and osteogenesis. The possible mechanism may involve p-STAT3 directly interacting with NRF2.


Asunto(s)
Pérdida de Hueso Alveolar , Ferroptosis , Periodontitis , Piperazinas , Animales , Ratones , Interleucina-17 , Factor de Transcripción STAT3 , Factor 2 Relacionado con NF-E2 , Osteogénesis , Periodontitis/tratamiento farmacológico
2.
Biomacromolecules ; 24(7): 3345-3356, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37380981

RESUMEN

Oral defects lead to a series of function disorders, severely threatening the patients' health. Although injectable hydrogels are widely studied in tissue regeneration, their mechanical performance is usually stationary after implant, without further self-adaption toward the microenvironment. Herein, an injectable hydrogel with programmed mechanical kinetics of instant gelation and gradual self-strengthening along with outstanding biodegradation ability is developed. The fast gelation is realized through rapid Schiff base reaction between biodegradable chitosan and aldehyde-modified sodium hyaluronate, while self-strengthening is achieved via slow reaction between redundant amino groups on chitosan and epoxy-modified hydroxyapatite. The resultant hydrogel also possesses multiple functions including (1) bio-adhesion, (2) self-healing, (3) bactericidal, (4) hemostasis, and (5) X-ray in situ imaging, which can be effectively used for oral jaw repair. We believe that the strategy illustrated here will provide new insights into dynamic mechanical regulation of injectable hydrogels and promote their application in tissue regeneration.


Asunto(s)
Quitosano , Hidrogeles , Humanos , Cinética , Polisacáridos , Durapatita
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA