Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34445788

RESUMEN

Bone formation and growth are crucial for treating bone fractures. Improving bone-reconstruction methods using autologous bone and synthetic implants can reduce the recovery time. Here, we investigated three treatments using two different materials, a bone-derived decellularized extracellular matrix (bdECM) and ß-tricalcium phosphate (ß-TCP), individually and in combination, as osteogenic promoter between bone and 3D-printed polycaprolactone scaffold (6-mm diameter) in rat calvarial defects (8-mm critical diameter). The materials were tested with a human pre-osteoblast cell line (MG63) to determine the effects of the osteogenic promoter on bone formation in vitro. A polycaprolactone (PCL) scaffold with a porous structure was placed at the center of the in vivo rat calvarial defects. The gap between the defective bone and PCL scaffold was filled with each material. Animals were sacrificed four weeks post-implantation, and skull samples were preserved for analysis. The preserved samples were scanned by micro-computed tomography and analyzed histologically to examine the clinical benefits of the materials. The bdECM-ß-TCP mixture showed faster bone formation and a lower inflammatory response in the rats. Therefore, our results imply that a bdECM-ß-TCP mixture is an ideal osteogenic promoter for treating fractures.


Asunto(s)
Fosfatos de Calcio/farmacología , Matriz Extracelular/efectos de los fármacos , Fracturas Óseas/tratamiento farmacológico , Hidrogeles/farmacología , Osteogénesis/efectos de los fármacos , Poliésteres/farmacología , Andamios del Tejido/química , Animales , Matriz Ósea/efectos de los fármacos , Regeneración Ósea/efectos de los fármacos , Células Cultivadas , Humanos , Osteoblastos/efectos de los fármacos , Impresión Tridimensional , Ratas , Ratas Sprague-Dawley , Ingeniería de Tejidos/métodos
2.
Int J Mol Sci ; 22(11)2021 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-34063742

RESUMEN

Three-dimensional (3D) printing is perceived as an innovative tool for change in tissue engineering and regenerative medicine based on research outcomes on the development of artificial organs and tissues. With advances in such technology, research is underway into 3D-printed artificial scaffolds for tissue recovery and regeneration. In this study, we fabricated artificial scaffolds by coating bone demineralized and decellularized extracellular matrix (bdECM) onto existing 3D-printed polycaprolactone/tricalcium phosphate (PCL/TCP) to enhance osteoconductivity and osteoinductivity. After injecting adipose-derived stem cells (ADSCs) in an aggregate form found to be effective in previous studies, we examined the effects of the scaffold on ossification during mandibular reconstruction in beagle dogs. Ten beagles were divided into two groups: group A (PCL/TCP/bdECM + ADSC injection; n = 5) and group B (PCL/TCP/bdECM; n = 5). The results were analyzed four and eight weeks after intervention. Computed tomography (CT) findings showed that group A had more diffuse osteoblast tissue than group B. Evidence of infection or immune rejection was not detected following histological examination. Goldner trichrome (G/T) staining revealed rich ossification in scaffold pores. ColI, Osteocalcin, and Runx2 gene expressions were determined using real-time polymerase chain reaction. Group A showed greater expression of these genes. Through Western blotting, group A showed a greater expression of genes that encode ColI, Osteocalcin, and Runx2 proteins. In conclusion, intervention group A, in which the beagles received the additional ADSC injection together with the 3D-printed PCL/TCP coated with bdECM, showed improved mandibular ossification in and around the pores of the scaffold.


Asunto(s)
Tejido Adiposo/citología , Fosfatos de Calcio/química , Matriz Extracelular/fisiología , Mandíbula/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Poliésteres/química , Células Madre/citología , Andamios del Tejido/química , Adipocitos/citología , Animales , Regeneración Ósea/efectos de los fármacos , Perros , Osteoblastos/efectos de los fármacos , Impresión Tridimensional , Ingeniería de Tejidos/métodos
3.
J Craniofac Surg ; 29(7): 1880-1883, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30028404

RESUMEN

Bone tissue engineering technology based on scaffold has been applied for cleft lip and palate treatment. However, clinical applications of patient-specific three-dimensional (3D) scaffolds have rarely been performed. In this study, a clinical case using patient-specific 3D-printed bioresorbable scaffold with bone marrow stromal cells collected from iliac crest in the operating room has been introduced. At 6-month after transplantation, the bone volume of the newly regenerated bone was approximately 45% of the total defect volume. Bone mineral density of the newly regenerated bone was about 75% compared to the surrounding bone. The Hounsfield unit value was higher than that of cancellous maxillary alveolar bone and lower than that of the cortical maxillary alveolar bone. Bone-marrow-derived mesenchymal stem cells-seeded 3D-printed patient-specific polycaprolactone scaffolds offer a promising alternative for alveolar cleft reconstruction and other bony defects.


Asunto(s)
Implantes Absorbibles , Proceso Alveolar/anomalías , Proceso Alveolar/cirugía , Trasplante de Células Madre Mesenquimatosas , Andamios del Tejido , Proceso Alveolar/diagnóstico por imagen , Regeneración Ósea , Niño , Humanos , Masculino , Maxilar/cirugía , Células Madre Mesenquimatosas , Poliésteres , Impresión Tridimensional , Ingeniería de Tejidos/métodos
4.
Int J Mol Sci ; 18(5)2017 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-28441338

RESUMEN

This study was conducted to compare 3D-printed polycaprolactone (PCL) and polycaprolactone/ß-tricalcium phosphate (PCL/ß-TCP) membranes with a conventional commercial collagen membrane in terms of their abilities to facilitate guided bone regeneration (GBR). Fabricated membranes were tested for dry and wet mechanical properties. Fibroblasts and preosteoblasts were seeded into the membranes and rates and patterns of proliferation were analyzed using a kit-8 assay and by scanning electron microscopy. Osteogenic differentiation was verified by alizarin red S and alkaline phosphatase (ALP) staining. An in vivo experiment was performed using an alveolar bone defect beagle model, in which defects in three dogs were covered with different membranes. CT and histological analyses at eight weeks after surgery revealed that 3D-printed PCL/ß-TCP membranes were more effective than 3D-printed PCL, and substantially better than conventional collagen membranes in terms of biocompatibility and bone regeneration and, thus, at facilitating GBR.


Asunto(s)
Materiales Biocompatibles/química , Regeneración Ósea/fisiología , Huesos/fisiología , Fosfatos de Calcio/química , Poliésteres/química , Impresión Tridimensional , Animales , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Regeneración Ósea/efectos de los fármacos , Huesos/diagnóstico por imagen , Huesos/patología , Diferenciación Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Colágeno/química , Perros , Fracturas Óseas/patología , Fracturas Óseas/terapia , Membranas Artificiales , Ratones , Microscopía Electrónica de Rastreo , Osteogénesis/efectos de los fármacos , Microtomografía por Rayos X
5.
JAMA Otolaryngol Head Neck Surg ; 144(12): 1145-1152, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30326042

RESUMEN

Importance: Studies have shown the controllability and porosity of polycaprolactone as well as the use of 3-dimensional (3-D) printing for nasal reconstruction in animal models. The utility of polycaprolactone with 3-D technology in nasal cartilaginous framework reconstruction in humans remains unknown. Objective: To investigate the safety and efficacy of 3-D printed, bioresorbable polycaprolactone nasal implants. Design, Setting, and Participants: This multicenter clinical trial comprised 20 patients with caudal septal deviations who underwent septoplasty, which used a 3-D printed polycaprolactone mesh, at 2 centers in South Korea. Patients were included if they were aged 18 to 74 years and had nasal septal deviations, Nasal Obstruction Symptom Evaluation scores greater than 20, and persistent nasal obstructions. Twenty-two patients met the inclusion criteria, but 2 patients were excluded before the operation. The study was conducted from July 1, 2016, to June 30, 2017. Main Outcomes and Measures: The change in total Nasal Obstruction Symptom Evaluation score between the preoperative examination and the week 12 postoperative examination was the primary outcome. Changes in bilateral nasal cavity minimum cross-sectional area and volume on acoustic rhinometry at weeks 4 and 12 after the operation as well as changes in the nasal cavity cross-sectional area at the osteomeatal unit and nasal septum angle in the paranasal sinus on computed tomography after week 12 were among the secondary outcomes. Results: Of the 20 patients included in the study, 4 (20%) were female, 16 (80%) were male, with a mean (SD) age of 34.95 (11.96) years. The preoperative and week 12 postoperative results revealed significant changes in the minimal cross-sectional areas on acoustic rhinometry (0.41 [SD, 0.39] vs -0.11 [SD, 0.18]; difference, 0.42; 95% CI, 0.23-0.61), nasal septum angles on computed tomography (11.22 [SD, 6.57] vs 2.89 [SD, 3.12]; difference, 8.33; 95% CI, 5.08-11.58), and Nasal Obstruction Symptom Evaluation scores (73.50 [SD, 19.88] vs 3.75 [SD, 6.26]; difference, 69.75; 95% CI, 59.22-80.28). The surgeons' convenience level with the procedure was favorable (visual analog scale score [SD], 90.90 [9.45]), and so were the patients' symptom improvements and satisfaction after 12 weeks (visual analog scale score [SD], 88.30 [9.87]). Conclusions and Relevance: The 3-D printed, homogeneous, composite, microporous polycaprolactone nasal implant demonstrated proper mechanical support and thinness with excellent biocompatibility and surgical manipulability. Polycaprolactone may be a clinically biocompatible material for use in various craniofacial reconstructions in the future.


Asunto(s)
Tabique Nasal/anomalías , Tabique Nasal/cirugía , Impresión Tridimensional , Prótesis e Implantes , Diseño de Prótesis , Rinoplastia/métodos , Implantes Absorbibles , Adulto , Anciano , Materiales Biocompatibles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Poliésteres , República de Corea , Rinometría Acústica , Resultado del Tratamiento
6.
Macromol Biosci ; 18(6): e1800025, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29687597

RESUMEN

Bone-derived extracellular matrix (ECM) is widely used in studies on bone regeneration because of its ability to provide a microenvironment of native bone tissue. However, a hydrogel, which is a main type of ECM application, is limited to use for bone graft substitutes due to relative lack of mechanical properties. The present study aims to fabricate a scaffold for guiding effective bone regeneration. A polycaprolactone (PCL)/beta-tricalcium phosphate (ß-TCP)/bone decellularized extracellular matrix (dECM) scaffold capable of providing physical and physiological environment are fabricated using 3D printing technology and decoration method. PCL/ß-TCP/bone dECM scaffolds exhibit excellent cell seeding efficiency, proliferation, and early and late osteogenic differentiation capacity in vitro. In addition, outstanding results of bone regeneration are observed in PCL/ß-TCP/bone dECM scaffold group in the rabbit calvarial defect model in vivo. These results indicate that PCL/ß-TCP/bone dECM scaffolds have an outstanding potential as bone graft substitutes for effective bone regeneration.


Asunto(s)
Matriz Ósea/química , Regeneración Ósea , Fosfatos de Calcio/química , Osteoblastos/metabolismo , Poliésteres/química , Impresión Tridimensional , Andamios del Tejido/química , Animales , Línea Celular , Ratones , Osteoblastos/citología , Porcinos
7.
Biomed Mater ; 13(1): 015014, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29155411

RESUMEN

The appropriate porosity and pore size of barrier membranes were associated with the transportation of biomolecules required for new bone formation and angiogenesis. In this study, we fabricated three-dimensional (3D)-printed resorbable polycaprolactone (PCL) membranes with different porosities (30%, 50%, and 70%) to evaluate the effective pore size for guided bone regeneration (GBR) membranes. To analyze mechanical properties and cytocompatibility, PCL membranes prepared using extrusion-based 3D printing technology were compared in dry and wet conditions and tested in vitro. The proliferation rates and pattern of fibroblasts and preosteoblasts on PCL membranes with different porosities were determined using a cell counting kit-8 assay and scanning electron microscopy. PCL membrane porosity did not affect cell proliferation, but osteogenic differentiation and mechanical properties were increased with lower porosity (30%) on day 14 (p < 0.001). Similar results were found in an in vivo calvarial defect model; new bone formation was significantly higher in PCL membranes with lower porosity (p < 0.001). These results indicate that 3D-printed PCL with 30% porosity (130 µm pore size) is an excellent pore size for GBR membranes.


Asunto(s)
Materiales Biocompatibles/farmacología , Regeneración Ósea/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Poliésteres/química , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Durapatita/farmacología , Masculino , Ratones , Microscopía Electrónica de Rastreo , Células 3T3 NIH , Porosidad , Impresión Tridimensional , Conejos , Estrés Mecánico , Ingeniería de Tejidos/métodos , Andamios del Tejido , Microtomografía por Rayos X
8.
Laryngoscope ; 127(5): 1036-1043, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28150412

RESUMEN

OBJECTIVES: Polycaprolactone (PCL) is an U.S. Food and Drug Administration-approved synthetic biodegradable polymer and is easily fabricated into three-dimensional (3D) structures. In this study, the 3D-printed PCL implant for nasal augmentation was further evaluated for its suitability for nasal surgeries such as septoplasty and rhinoplasty. METHODS: Ten New Zealand White rabbits were included and divided into study and sham groups (7 and 3, respectively). A lateral incision was made on the nasal dorsum and a pocket formed in the subperichondrial plane between the upper lateral cartilage and nasal septum. Polycaprolactone was fabricated based on 3D printing technology into a 0.8 × 0.8-cm rectangular shape for use as a nasal implant. The material was inserted as a septal extension graft and sutured with alar cartilage for nasal reshaping. The implants were harvested 4, 8, and 12 weeks after implantation and evaluated by gross morphological assessment and histological examination. RESULTS: The initial shape of the implant was unchanged in all cases, and no definitive postoperative complications were seen over the 3-month period. Gross morphological evaluation confirmed that implants remained in their initial location without migration or extrusion. Histologic evaluations showed that the implant architectures were maintained with excellent fibrovascular ingrowth and minimal inflammatory reactions. CONCLUSION: Polycaprolactone can be used for nasal reconstruction such as nasal augmentation. Polycaprolactone is easy to work with and will avoid the increased operative time and morbidity associated with autograft harvesting. Therefore, PCL implants designed by 3D printing can serve as clinically biocompatible materials in craniofacial reconstruction in the future. LEVEL OF EVIDENCE: NA. Laryngoscope, 127:1036-1043, 2017.


Asunto(s)
Poliésteres/farmacología , Impresión Tridimensional , Prótesis e Implantes , Rinoplastia/instrumentación , Animales , Modelos Animales , Tabique Nasal/cirugía , Diseño de Prótesis , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA