Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Molecules ; 27(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35209122

RESUMEN

The COVID-19 pandemic has raised the problem of efficient, low-cost materials enabling the effective protection of people from viruses transmitted through the air or via surfaces. Nanofibers can be a great candidate for efficient air filtration due to their structure, although they cannot protect from viruses. In this work, we prepared a wide range of nanofibrous biodegradable samples containing Ag (up to 0.6 at.%) and Cu (up to 20.4 at.%) exhibiting various wettability. By adjusting the magnetron current (0.3 A) and implanter voltage (5 kV), the deposition of TiO2 and Ag+ implantation into PCL/PEO nanofibers was optimized in order to achieve implantation of Ag+ without damaging the nanofibrous structure of the PCL/PEO. The optimal conditions to implant silver were achieved for the PCL-Ti0.3-Ag-5kV sample. The coating of PCL nanofibers by a Cu layer was successfully realized by magnetron sputtering. The antiviral activity evaluated by widely used methodology involving the cultivation of VeroE6 cells was the highest for PCL-Cu and PCL-COOH, where the VeroE6 viability was 73.1 and 68.1%, respectively, which is significantly higher compared to SARS-CoV-2 samples without self-sanitizing (42.8%). Interestingly, the samples with implanted silver and TiO2 exhibited no antiviral effect. This difference between Cu and Ag containing nanofibers might be related to the different concentrations of ions released from the samples: 80 µg/L/day for Cu2+ versus 15 µg/L/day for Ag+. The high antiviral activity of PCL-Cu opens up an exciting opportunity to prepare low-cost self-sanitizing surfaces for anti-SARS-CoV-2 protection and can be essential for air filtration application and facemasks. The rough cost estimation for the production of a biodegradable nanohybrid PCL-Cu facemask revealed ~$0.28/piece, and the business case for the production of these facemasks would be highly positive, with an Internal Rate of Return of 34%.


Asunto(s)
Antivirales/química , COVID-19/prevención & control , Materiales Biocompatibles Revestidos/química , Nanofibras/química , SARS-CoV-2/química , Animales , COVID-19/transmisión , Chlorocebus aethiops , Cobre/química , Oro/química , Humanos , Poliésteres/química , Titanio/química , Células Vero
2.
Int J Mol Sci ; 21(24)2020 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322781

RESUMEN

Amine-coated biodegradable materials based on synthetic polymers have a great potential for tissue remodeling and regeneration because of their excellent processability and bioactivity. In the present study, we have investigated the influence of various chemical compositions of amine plasma polymer (PP) coatings and the influence of the substrate morphology, represented by polystyrene culture dishes and polycaprolactone nanofibers (PCL NFs), on the behavior of vascular smooth muscle cells (VSMCs). Although all amine-PP coatings improved the initial adhesion of VSMCs, 7-day long cultivation revealed a clear preference for the coating containing about 15 at.% of nitrogen (CPA-33). The CPA-33 coating demonstrated the ideal combination of good water stability, a sufficient amine group content, and favorable surface wettability and morphology. The nanostructured morphology of amine-PP-coated PCL NFs successfully slowed the proliferation rate of VSMCs, which is essential in preventing restenosis of vascular replacements in vivo. At the same time, CPA-33-coated PCL NFs supported the continuous proliferation of VSMCs during 7-day long cultivation, with no significant increase in cytokine secretion by RAW 264.7 macrophages. The CPA-33 coating deposited on biodegradable PCL NFs therefore seems to be a promising material for manufacturing small-diameter vascular grafts, which are still lacking on the current market.


Asunto(s)
Aminas/química , Materiales Biocompatibles Revestidos/farmacología , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Nanofibras/química , Plasma/química , Polímeros/química , Aminas/efectos adversos , Aminas/inmunología , Aminas/farmacología , Animales , Adhesión Celular/efectos de los fármacos , Adhesión Celular/inmunología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Materiales Biocompatibles Revestidos/efectos adversos , Materiales Biocompatibles Revestidos/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Músculo Liso Vascular/citología , Músculo Liso Vascular/crecimiento & desarrollo , Miocitos del Músculo Liso/metabolismo , Nanofibras/efectos adversos , Espectroscopía de Fotoelectrones , Plasma/inmunología , Poliésteres/química , Polímeros/efectos adversos , Polímeros/farmacología , Células RAW 264.7 , Ratas , Propiedades de Superficie/efectos de los fármacos , Andamios del Tejido/efectos adversos , Andamios del Tejido/química
3.
Anal Bioanal Chem ; 411(29): 7689-7697, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31250063

RESUMEN

We report on the successful application of carboxyl-rich plasma polymerized (PP) films as a matrix layer for bioreceptor immobilization in surface plasmon resonance (SPR) immunosensing. Composition and chemical properties of the carboxyl-rich PP films deposited from a mixture of maleic anhydride and acetylene were investigated. Changes in the films stored in air, water, and buffer were studied and the involved chemical changes were described. Performance in SPR immunosensing was evaluated on interactions of human serum albumin (HSA) with a specific monoclonal antibody. The comparison with the mixed self-assembled monolayer of mercaptoundecanoic acid and mercaptohexanol (MUA/MCH) and one of the most widely used surfaces for SPR, the 2D and 3D carboxymethylated dextran (CMD), was presented to show the efficacy of plasma polymerized matrix layers for biosensing. The PP film-based SPR immunosensor provided a similar detection limit of HSA (100 ng/mL) as MUA/MCH- (100 ng/mL) and 3D CMD (50 ng/mL)-based sensors. However, the response levels were about twice higher in case of the PP film-based immunosensor than in case of MUA/MCH-based alternative. The PP film surfaces had similar binding capacity towards antibody as the 3D CMD layers. The response of PP film-based sensor towards HSA was comparable to 3D CMD-based sensor up to 2.5 µg/mL. For the higher concentrations (> 10 µg/mL), the response of PP film-based immunosensor was lower due to inaccessibility of active sites of the immobilized antibody inside the flat PP film surface. We have demonstrated that due to its high stability and cost-effective straightforward preparation, the carboxyl-rich PP films represent an efficient alternative to self-assembled monolayers (SAM) and dextran-based layers in label-free immunosensing. Graphical abstract.


Asunto(s)
Acetileno/química , Anhídridos Maleicos/química , Gases em Plasma , Polímeros/química , Resonancia por Plasmón de Superficie/métodos , Técnicas Biosensibles , Límite de Detección , Microscopía de Fuerza Atómica , Compuestos de Sulfhidrilo/química , Propiedades de Superficie
4.
AAPS PharmSciTech ; 18(1): 72-81, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26883261

RESUMEN

In this study, biodegradable poly(ε-caprolactone) (PCL) nanofibers (PCL-NF), collagen-coated PCL nanofibers (Col-c-PCL), and titanium dioxide-incorporated PCL (TiO2-i-PCL) nanofibers were prepared by electrospinning technique to study the surface and structural compatibility of these scaffolds for skin tisuue engineering. Collagen coating over the PCL nanofibers was done by electrospinning process. Morphology of PCL nanofibers in electrospinning was investigated at different voltages and at different concentrations of PCL. The morphology, interaction between different materials, surface property, and presence of TiO2 were studied by scanning electron microscopy (SEM), Fourier transform IR spectroscopy (FTIR), contact angle measurement, energy dispersion X-ray spectroscopy (EDX), and X-ray photoelectron spectroscopy (XPS). MTT assay and cell adhesion study were done to check biocompatibilty of these scaffolds. SEM study confirmed the formation of nanofibers without beads. FTIR proved presence of collagen on PCL scaffold, and contact angle study showed increment of hydrophilicity of Col-c-PCL and TiO2-i-PCL due to collagen coating and incorporation of TiO2, respectively. EDX and XPS studies revealed distribution of entrapped TiO2 at molecular level. MTT assay and cell adhesion study using L929 fibroblast cell line proved viability of cells with attachment of fibroblasts over the scaffold. Thus, in a nutshell, we can conclude from the outcomes of our investigational works that such composite can be considered as a tissue engineered construct for skin wound healing.


Asunto(s)
Materiales Biocompatibles/química , Poliésteres/química , Piel/química , Adhesión Celular/fisiología , Colágeno/química , Fibroblastos/química , Interacciones Hidrofóbicas e Hidrofílicas , Nanofibras/química , Espectroscopía de Fotoelectrones/métodos , Propiedades de Superficie , Ingeniería de Tejidos/métodos , Andamios del Tejido , Titanio/química
5.
Sci Rep ; 11(1): 17870, 2021 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504247

RESUMEN

Regeneration of large bone defects caused by trauma or tumor resection remains one of the biggest challenges in orthopedic surgery. Because of the limited availability of autograft material, the use of artificial bone is prevalent; however, the primary role of currently available artificial bone is restricted to acting as a bone graft extender owing to the lack of osteogenic ability. To explore whether surface modification might enhance artificial bone functionality, in this study we applied low-pressure plasma technology as next-generation surface treatment and processing strategy to chemically (amine) modify the surface of beta-tricalcium phosphate (ß-TCP) artificial bone using a CH4/N2/He gas mixture. Plasma-treated ß-TCP exhibited significantly enhanced hydrophilicity, facilitating the deep infiltration of cells into interconnected porous ß-TCP. Additionally, cell adhesion and osteogenic differentiation on the plasma-treated artificial bone surfaces were also enhanced. Furthermore, in a rat calvarial defect model, the plasma treatment afforded high bone regeneration capacity. Together, these results suggest that amine modification of artificial bone by plasma technology can provide a high osteogenic ability and represents a promising strategy for resolving current clinical limitations regarding the use of artificial bone.


Asunto(s)
Materiales Biocompatibles/metabolismo , Regeneración Ósea/fisiología , Sustitutos de Huesos/metabolismo , Fosfatos de Calcio/metabolismo , Osteogénesis/fisiología , Animales , Sustitutos de Huesos/uso terapéutico , Trasplante Óseo/métodos , Diferenciación Celular/fisiología , Ratas
6.
Biointerphases ; 10(2): 029520, 2015 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-25967153

RESUMEN

Recently, diamondlike carbon (DLC) thin films have gained interest for biological applications, such as hip and dental prostheses or heart valves and coronary stents, thanks to their high strength and stability. However, the biocompatibility of the DLC is still questionable due to its low wettability and possible mechanical failure (delamination). In this work, DLC:N:O and DLC: SiOx thin films were comparatively investigated with respect to cell proliferation. Thin DLC films with an addition of N, O, and Si were prepared by plasma enhanced CVD from mixtures of methane, hydrogen, and hexamethyldisiloxane. The films were optically characterized by infrared spectroscopy and ellipsometry in UV-visible spectrum. The thickness and the optical properties were obtained from the ellipsometric measurements. Atomic composition of the films was determined by Rutherford backscattering spectroscopy combined with elastic recoil detection analysis and by x-ray photoelectron spectroscopy. The mechanical properties of the films were studied by depth sensing indentation technique. The number of cells that proliferate on the surface of the prepared DLC films and on control culture dishes were compared and correlated with the properties of as-deposited and aged films. The authors found that the level of cell proliferation on the coated dishes was high, comparable to the untreated (control) samples. The prepared DLC films were stable and no decrease of the biocompatibility was observed for the samples aged at ambient conditions.


Asunto(s)
Materiales Biocompatibles/síntesis química , Carbono/toxicidad , Proliferación Celular , Ensayo de Materiales , Mioblastos/fisiología , Animales , Materiales Biocompatibles/química , Línea Celular , Fenómenos Químicos , Ratones , Plasma , Análisis Espectral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA