Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38999953

RESUMEN

Hybrid scaffolds that are based on PLA and PLA/PMMA with 75/25, 50/50, and 25/75 weight ratios and functionalized with 10 wt.% of bioglass nanoparticles (n-BG) were developed using an electrospinning technique with a chloroform/dimethylformamide mixture in a 9:1 ratio for bone tissue engineering applications. Neat PLA and PLA/PMMA hybrid scaffolds were developed successfully through a (CF/DMF) solvent system, obtaining a random fiber deposition that generated a porous structure with pore interconnectivity. However, with the solvent system used, it was not possible to generate fibers in the case of the neat PMMA sample. With the increase in the amount of PMMA in PLA/PMMA ratios, the fiber diameter of hybrid scaffolds decreases, and the defects (beads) in the fiber structure increase; these beads are associated with a nanoparticle agglomeration, that could be related to a low interaction between n-BG and the polymer matrix. The Young's modulus of PLA/PMMA/n-BG decreases by 34 and 80%, indicating more flexible behavior compared to neat PLA. The PLA/PMMA/n-BG scaffolds showed a bioactive property related to the presence of hydroxyapatite crystals in the fiber surface after 28 days of immersion in a Simulated Body Fluids solution (SBF). In addition, the hydrolytic degradation process of PLA/PMMA/n-BG, analyzed after 35 days of immersion in a phosphate-buffered saline solution (PBS), was less than that of the pure PLA. The in vitro analysis using an HBOF-1.19 cell line indicated that the PLA/PMMA/n-BG scaffold showed good cell viability and was able to promote cell proliferation after 7 days. On the other hand, the in vivo biocompatibility evaluated via a subdermal model in BALC male mice corroborated the good behavior of the scaffolds in avoiding the generation of a cytotoxic effect and being able to enhance the healing process, suggesting that the materials are suitable for potential applications in tissue engineering.


Asunto(s)
Cerámica , Nanopartículas , Poliésteres , Polimetil Metacrilato , Ingeniería de Tejidos , Andamios del Tejido , Ingeniería de Tejidos/métodos , Poliésteres/química , Polimetil Metacrilato/química , Andamios del Tejido/química , Cerámica/química , Cerámica/farmacología , Nanopartículas/química , Animales , Ratones , Huesos/efectos de los fármacos , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Humanos , Línea Celular
2.
Molecules ; 29(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39064841

RESUMEN

Bone tissue engineering is a promising alternative to repair wounds caused by cellular or physical accidents that humans face daily. In this sense, the search for new graphene oxide (GO) nanofillers related to their degree of oxidation is born as an alternative bioactive component in forming new scaffolds. In the present study, three different GOs were synthesized with varying degrees of oxidation and studied chemically and tissue-wise. The oxidation degree was determined through infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron (XPS), and Raman spectroscopy (RS). The morphology of the samples was analyzed using scanning electron microscopy (SEM). The oxygen content was deeply described using the deconvolution of RS and XPS techniques. The latter represents the oxidation degree for each of the samples and the formation of new bonds promoted by the graphitization of the material. In the RS, two characteristic bands were observed according to the degree of oxidation and the degree of graphitization of the material represented in bands D and G with different relative intensities, suggesting that the samples have different crystallite sizes. This size was described using the Tuinstra-Koenig model, ranging between 18.7 and 25.1 nm. Finally, the bone neoformation observed in the cranial defects of critical size indicates that the F1 and F2 samples, besides being compatible and resorbable, acted as a bridge for bone healing through regeneration. This promoted healing by restoring bone and tissue structure without triggering a strong immune response.


Asunto(s)
Regeneración Ósea , Grafito , Ingeniería de Tejidos , Andamios del Tejido , Grafito/química , Regeneración Ósea/efectos de los fármacos , Ingeniería de Tejidos/métodos , Animales , Andamios del Tejido/química , Nanoestructuras/química , Huesos/efectos de los fármacos , Espectrometría Raman , Oxidación-Reducción , Difracción de Rayos X , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ratas , Espectroscopía Infrarroja por Transformada de Fourier
3.
Molecules ; 29(16)2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39202929

RESUMEN

Materials with a soft tissue regenerative capacity can be produced using biopolymer scaffolds and nanomaterials, which allow injured tissue to recover without any side effects or limitations. Four formulations were prepared using polyvinyl alcohol (PVA) and chitosan (CS), with silicon dioxide nanoparticles (NPs-SiO2) incorporated using the freeze-drying method at a temperature of -50 °C. TGA and DSC showed no change in thermal degradation, with glass transition temperatures around 74 °C and 77 °C. The interactions between the hydroxyl groups of PVA and CS remained stable. Scanning electron microscopy (SEM) indicated that the incorporation of NPs-SiO2 complemented the freeze-drying process, enabling the dispersion of the components on the polymeric matrix and obtaining structures with a small pore size (between 30 and 60 µm) and large pores (between 100 and 160 µm). The antimicrobial capacity analysis of Gram-positive and Gram-negative bacteria revealed that the scaffolds inhibited around 99% of K. pneumoniae, E. cloacae, and S. aureus ATCC 55804. The subdermal implantation analysis demonstrated tissue growth and proliferation, with good biocompatibility, promoting the healing process for tissue restoration through the simultaneous degradation and formation of type I collagen fibers. All the results presented expand the boundaries in tissue engineering and regenerative medicine by highlighting the crucial role of nanoparticles in optimizing scaffold properties.


Asunto(s)
Quitosano , Liofilización , Nanopartículas , Alcohol Polivinílico , Dióxido de Silicio , Ingeniería de Tejidos , Andamios del Tejido , Quitosano/química , Alcohol Polivinílico/química , Dióxido de Silicio/química , Andamios del Tejido/química , Nanopartículas/química , Ingeniería de Tejidos/métodos , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Medicina Regenerativa/métodos , Regeneración/efectos de los fármacos
4.
Molecules ; 27(18)2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36144483

RESUMEN

Autologous bone is the gold standard in regeneration processes. However, there is an endless search for alternative materials in bone regeneration. Xenografts can act as bone substitutes given the difficulty of obtaining bone tissue from patients and before the limitations in the availability of homologous tissue donors. Bone neoformation was studied in critical-size defects created in the parietal bone of 40 adult male Wistar rats, implanted with xenografts composed of particulate bovine hydroxyapatite (HA) and with blocks of bovine hydroxyapatite (HA) and Collagen, which introduces crystallinity to the materials. The Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated the carbonate and phosphate groups of the hydroxyapatite and the amide groups of the collagen structure, while the thermal transitions for HA and HA/collagen composites established mainly dehydration endothermal processes, which increased (from 79 °C to 83 °C) for F2 due to the collagen presence. The xenograft's X-ray powder diffraction (XRD) analysis also revealed the bovine HA crystalline structure, with a prominent peak centered at 32°. We observed macroporosity and mesoporosity in the xenografts from the morphology studies with heterogeneous distribution. The two xenografts induced neoformation in defects of critical size. Histological, histochemical, and scanning electron microscopy (SEM) analyses were performed 30, 60, and 90 days after implantation. The empty defects showed signs of neoformation lower than 30% in the three periods, while the defects implanted with the material showed partial regeneration. InterOss Collagen material temporarily induced osteon formation during the healing process. The results presented here are promising for bone regeneration, demonstrating a beneficial impact in the biomedical field.


Asunto(s)
Sustitutos de Huesos , Amidas , Animales , Regeneración Ósea , Sustitutos de Huesos/química , Sustitutos de Huesos/farmacología , Bovinos , Colágeno/química , Durapatita/química , Durapatita/farmacología , Xenoinjertos , Humanos , Masculino , Ratas , Ratas Wistar
5.
Molecules ; 25(10)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32423061

RESUMEN

Scaffold development for cell regeneration has increased in recent years due to the high demand for more efficient and biocompatible materials. Nanomaterials have become a critical alternative for mechanical, thermal, and antimicrobial property reinforcement in several biopolymers. In this work, four different chitosan (CS) bead formulations crosslinked with glutaraldehyde (GLA), including titanium dioxide nanoparticles (TiO2), and graphene oxide (GO) nanosheets, were prepared with potential biomedical applications in mind. The characterization of by FTIR spectroscopy, X-ray photoelectron spectroscopy (XRD), thermogravimetric analysis (TGA), energy-dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), demonstrated an efficient preparation of nanocomposites, with nanoparticles well-dispersed in the polymer matrix. In vivo, subdermal implantation of the beads in Wistar rat's tissue for 90 days showed a proper and complete healing process without any allergenic response to any of the formulations. Masson's trichrome staining of the histological implanted tissues demonstrated the presence of a group of macrophage/histiocyte compatible cells, which indicates a high degree of biocompatibility of the beads. The materials were very stable under body conditions as the morphometry studies showed, but with low resorption percentages. These high stability beads could be used as biocompatible, resistant materials for long-term applications. The results presented in this study show the enormous potential of these chitosan nanocomposites in cell regeneration and biomedical applications.


Asunto(s)
Quitosano/química , Grafito/química , Nanocompuestos/química , Nanopartículas/química , Andamios del Tejido , Titanio/química , Animales , Materiales Biocompatibles , Supervivencia Celular/efectos de los fármacos , Quitosano/farmacología , Grafito/farmacología , Histiocitos/citología , Histiocitos/efectos de los fármacos , Histiocitos/fisiología , Masculino , Nanocompuestos/ultraestructura , Nanopartículas/ultraestructura , Ratas , Ratas Wistar , Piel/citología , Piel/efectos de los fármacos , Ingeniería de Tejidos/métodos , Titanio/farmacología
6.
Molecules ; 24(1)2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-30602678

RESUMEN

CaCO3 nanoparticles of around 60 nm were obtained by a co-precipitation method and used as filler to prepare low-density polyethylene (LDPE) composites by melt blending. The nanoparticles were also organically modified with oleic acid (O-CaCO3) in order to improve their interaction with the LDPE matrix. By adding 3 and 5 wt% of nanofillers, the mechanical properties under tensile conditions of the polymer matrix improved around 29%. The pure LDPE sample and the nanocomposites with 5 wt% CaCO3 were photoaged by ultraviolet (UV) irradiation during 35 days and the carbonyl index (CI), degree of crystallinity (χc), and Young's modulus were measured at different times. After photoaging, the LDPE/CaCO3 nanocomposites increased the percent crystallinity (χc), the CI, and Young's modulus as compared to the pure polymer. Moreover, the viscosity of the photoaged nanocomposite was lower than that of photoaged pure LDPE, while scanning electron microscopy (SEM) analysis showed that after photoaging the nanocomposites presented cavities around the nanoparticles. These difference showed that the presence of CaCO3 nanoparticles accelerate the photo-degradation of the polymer matrix. Our results show that the addition of CaCO3 nanoparticles into an LDPE polymer matrix allows future developments of more sustainable polyethylene materials that could be applied as films in agriculture. These LDPE-CaCO3 nanocomposites open the opportunity to improve the low degradation of the LDPE without sacrificing the polymer's behavior, allowing future development of novel eco-friendly polymers.


Asunto(s)
Carbonato de Calcio/química , Ácido Oléico/química , Polietileno/química , Módulo de Elasticidad , Nanocompuestos/química , Nanopartículas/química , Fotólisis
7.
Int J Biol Macromol ; 273(Pt 1): 132891, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38848852

RESUMEN

Electrospun nanocomposite scaffolds with improved bioactive and biological properties were fabricated from a blend of polycaprolactone (PCL) and starch, and then combined with 5 wt% of calcium oxide (CaO) nanoparticles sourced from eggshells. SEM analyses showed scaffolds with fibrillar morphology and a three-dimensional structure. The hydrophilicity of scaffolds was improved with starch and CaO nanoparticles, which was evidenced by enhanced water absorption (3500 %) for 7 days. In addition, PCL/Starch/CaO scaffolds exhibited major degradation, with a mass loss of approximately 60 % compared to PCL/Starch and PCL/CaO. The PCL/Starch/CaO scaffolds decreased in crystallinity as intermolecular interactions between the nanoparticles retarded the mobility of the polymeric chains, leading to a significant increase in Young's modulus (ca. 60 %) and a decrease in tensile strength and elongation at break, compared to neat PCL. SEM-EDS, FT-IR, and XRD analyses indicated that PCL/Starch/CaO scaffolds presented a higher biomineralization capacity due to the ability to form hydroxyapatite (HA) in their surface after 28 days. The PCL/Starch/CaO scaffolds showed attractive biological performance, allowing cell adhesion and viability of M3T3-E1 preosteoblastic cells. In vivo analysis using a subdermal dorsal model in Wistar rats showed superior biocompatibility and improved resorption process compared to a pure PCL matrix. This biological analysis suggested that the PCL/Starch/CaO electrospun mats are suitable scaffolds for guiding the regeneration of bone tissue.


Asunto(s)
Huesos , Compuestos de Calcio , Nanopartículas , Óxidos , Poliésteres , Almidón , Ingeniería de Tejidos , Andamios del Tejido , Almidón/química , Poliésteres/química , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Animales , Nanopartículas/química , Óxidos/química , Compuestos de Calcio/química , Ratas , Ratones , Materiales Biocompatibles/química , Ratas Wistar , Línea Celular , Nanocompuestos/química
8.
Int J Biol Macromol ; 248: 125939, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37482162

RESUMEN

Starch is a biodegradable biopolymer, a sustainable material that can replace conventional petrochemical-based plastics. However, starch has some limitations, as it must be processed by heating and treated mechanically with a plasticizer to become thermoplastic starch (TPS). Different variables such as mixing speeds, amount, and kind of plasticizers play a vital role in preparing TPS by melting. Despite this, the properties of the TPS are not comparable with those of traditional plastics. To overcome this limitation, microcellulose or nanocellulose is added to TPS by melt mixing, including the extrusion and internal mixing process, which enables large-scale production. This review aims to compile several studies that evaluate the effect of plasticizers, as well as the relevance of incorporating different cellulosic fillers of different dimensions on the properties of TPS obtained by melt mixing. Potential applications of these materials in food packaging, biomedical applications, and other opportunities are also described.


Asunto(s)
Celulosa , Plastificantes , Almidón , Plásticos
9.
Int J Biol Macromol ; 228: 78-88, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36565827

RESUMEN

Electrospun scaffolds based on poly(l-lactic acid) (PLLA) with bioglass (n-BG) and zinc oxide (n-ZnO), and mixture of both, were developed to design bifunctional biomaterials with enhanced bioactive and biocidal properties. The presence of n-BG increased the fiber diameter of the pure PLA from 1.5 ± 0.3 µm to 3.0 ± 0.8 µm for 20 wt%. ZnO and the mixed nanoparticles did not significantly affect the morphology. The mechanical properties decreased with the presence of nanoparticles. Scaffolds based on PLA/n-BG promoted hydroxyapatite (HA) formation in simulated body fluid (SBF) that was inhibited with the presence of ZnO. Notably, mixed particles produced bioactivity although at longer times. The incorporation of n-ZnO produced a biocidal capacity against S. aureus in the polymeric scaffold, reaching a viability reduction of 60 % after 6 h of exposure. When both types of nanoparticles were combined, the bacterial viability reduction was 30 %. Pure PLA scaffolds and the composites with n-BG showed good ST-2 bone marrow-derived cell line viability, scaffolds with n-BG (pure or mixture) presented lower viability. Results validated the use of both n-BG and n-ZnO fillers for the development of novel bifunctional PLA-based scaffolds with both bioactive and biocidal properties for bone tissue engineering applications.


Asunto(s)
Nanopartículas , Óxido de Zinc , Ingeniería de Tejidos/métodos , Andamios del Tejido , Staphylococcus aureus , Poliésteres
10.
Int J Biol Macromol ; 210: 324-336, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35545139

RESUMEN

Electrospun fibers of poly (lactic acid) (PLA) containing 10 and 20 wt% of bioactive glass (n-BG) and magnesium oxide (n-MgO) nanoparticles of ca. 27 and 23 nm respectively, were prepared toward to application in bone tissue engineering. The addition of both nanoparticles into the PLA will produce a synergic effect increasing its bioactivity and antimicrobial behavior. Neat PLA scaffold and the composites with MgO showed an average fiber diameter of 1.7 ± 0.6 µm, PLA/n-BG and PLA/n-BG/n-MgO fibers presented a significant diameter increase reaching values of ca. 3.1 ± 0.8 µm. Young's modulus of the electrospun scaffolds was affected by the direct presence of the particle and scaffold morphologies. All the composites having n-BG presented bioactivity through the precipitation of hydroxyapatite structures on the surface. Although n-MgO did not add bioactivity to the PLA fibers, they were able to render antimicrobial characteristics reducing the S. aureus viability around 30%, although an effect on E. coli strain was not observed. PLA/n-BG nanocomposites did not display any significant antimicrobial behavior. The different composites increased the alkaline phosphatase (ALP) expression as compared with pure PLA barely affecting the cell viability, meaning a good osteoblastic phenotype expression capacity, with PLA/n-BG presenting the highest osteoblastic expression.


Asunto(s)
Óxido de Magnesio , Nanopartículas , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Regeneración Ósea , Escherichia coli/metabolismo , Vidrio/química , Ácido Láctico/química , Óxido de Magnesio/farmacología , Nanopartículas/química , Poliésteres/química , Staphylococcus aureus/metabolismo , Ingeniería de Tejidos , Andamios del Tejido/química
11.
J Biomed Mater Res A ; 108(10): 2032-2043, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32333463

RESUMEN

Bioglass nanoparticles (n-BGs, 54SiO2 :40CaO:6P2 O5 mol %) with about 27 nm diameter were synthesized by the sol-gel method and incorporated into a poly(lactic acid) (PLA) matrix by the melting process in order to obtain nanocomposites with filler contents of 5, 10, and 25 wt %. Our results showed that during the cooling scan, the crystallization temperature (Tc ) of the PLA/n-BG nanocomposites decreased 13°C as compared to neat PLA. The presence of nanoparticles also decreased the thermal stability of the PLA matrix, as nanocomposites presented up to about 20°C lower degradation temperatures in a nitrogen atmosphere. The presence of n-BG increased the stiffness of the polymer matrix, and for instance the composite with 25 wt % of filler presented about 52.6% higher Young's modulus than neat PLA. n-BG incorporation into PLA increased also the hydrolytic degradation of the polymer over time. When the PLA composites were immersed in simulated body fluid, an apatite layer was formed on their surface, as verified by Fourier transform infrared, X-Ray Diffraction (XRD), and scanning electron microscopy-EDS, showing that the presence of n-BG induced bioactivity on the PLA matrix. Moreover, the viability of cervical uterine adenocarcinoma cells was higher on PLA/n-BG nanocomposite with 25 wt % of filler. The presence of n-BG barely gave an antibacterial effect on the polymer matrix, despite the well-known biocidal properties of these nanoparticles. Our results show that the presence of n-BGs is a proper route for improving the bioactivity of PLA with potential application in tissue engineering.


Asunto(s)
Materiales Biocompatibles/química , Cerámica/química , Nanopartículas/química , Poliésteres/química , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Cerámica/farmacología , Cristalización , Módulo de Elasticidad , Células HeLa , Humanos , Nanocompuestos/química , Poliésteres/farmacología
12.
PLoS One ; 14(8): e0214900, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31415561

RESUMEN

Novel Magnesium Oxide (MgO) nanoparticles (NPs) modified with the polymer polyethylene glycol (PEG) were synthesized as carrier for the anticancer drug 2-Methoxyestradiol (2ME) to improve its clinical application. The functionalized NPs were characterized by Infrared spectroscopy with Fourier transform to elucidate the vibration modes of this conjugate, indicating the formation of the MgO-PEG-2ME nanocomposite. The studies of absorption and liberation determined that MgO-PEG-2ME NPs incorporated 98.51 % of 2ME while liberation of 2ME was constant during 7 days at pH 2, 5 and 7.35. Finally, the MgO-PEG-2ME NPs decreased the viability of the prostate cancer cell line LNCap suggesting that this nanocomposite is suitable as a drug delivery system for anticancer prostate therapy.


Asunto(s)
2-Metoxiestradiol/química , Antineoplásicos/química , Portadores de Fármacos/química , Óxido de Magnesio/química , Nanopartículas/química , Polietilenglicoles/química , 2-Metoxiestradiol/farmacología , Absorción Fisicoquímica , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Humanos , Cinética , Óxido de Magnesio/toxicidad , Modelos Moleculares , Conformación Molecular
13.
Carbohydr Polym ; 182: 81-91, 2018 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-29279130

RESUMEN

A water soluble derivative in 98% yield with 23.1% incorporation of maleoyl groups was obtained by esterification of agarose with maleic anhydride. Graft copolymers were synthesized through vinyl groups of maleoylagarose with N-isopropylacrylamide using ceric ammonium nitrate or ammonium persulfate as initiator, by conventional method or microwave irradiation. High nitrogen content (4.6%) was obtained in the grafting process using ceric ammonium nitrate as initiator without microwave irradiation. Copolymers were characterized by FT-IR and NMR spectroscopies, TGA, DSC and morphological analysis by AFM and SEM microscopy, confirming the grafting of PNIPAAm onto polysaccharide backbone. Hydrogel films were obtained by ionic complexation between opposite charged groups of maleoylagarose-g-poly(N-isopropylacrylamide) and chitosan. The swelling of 1:1w/v maleoylagarose-g-PNIPAAm:chitosan film was higher than 2:1w/v film at 25 and 37°C. 53% release in vitro of diclofenac sodium from 1:1w/v maleoylagarose-g-PNIPAAm:chitosan was obtained at 37°C and pH 6.0 with <0.5 diffusional constant values.


Asunto(s)
Resinas Acrílicas/química , Quitosano/química , Electrólitos/síntesis química , Electrólitos/química
14.
Mater Sci Eng C Mater Biol Appl ; 69: 1282-9, 2016 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-27612828

RESUMEN

Silver nanofibers (Ag-Nfbs)~80nm in diameter were synthesized by hydrothermal treatment. The nanofibers (3 and 5wt%) were added in the initial feed together with the catalytic system. Polymerizations in an ethylene atmosphere were performed, yielding PE nanocomposites in situ with 3 and 5wt% content of Ag-Nfbs. The antibacterial effect of the silver-nanofiber composites was evaluated after incubation of Escherichia coli ATCC 25923 for 8h on their surface. Bacterial viability tests showed that the silver-nanofiber composites inhibited the growth of Escherichia coli ATCC 25923 by 88 and 56%. This behavior is attributed to increased silver ions release from the nanocomposite. TEM analysis showed that the antibacterial effect is associated with membrane disruption but not with changes in shape.


Asunto(s)
Antibacterianos/farmacología , Nanofibras/química , Polietileno/farmacología , Plata/farmacología , Biopelículas/efectos de los fármacos , Catálisis , Escherichia coli/efectos de los fármacos , Escherichia coli/ultraestructura , Iones , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Nanofibras/ultraestructura , Polimerizacion , Espectrometría por Rayos X , Temperatura
15.
Mater Sci Eng C Mater Biol Appl ; 57: 314-20, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26354270

RESUMEN

Poly(lactic acid) (PLA) composites with titanium oxide (TiO2) ~10-nm nanoparticles were produced by the melting process and their main properties were evaluated. The nanoparticles are homogeneously dispersed in the matrix with a low degree of agglomeration, as seen by transmission electron microscopy (TEM). The crystallinity temperature increased ~12% when 5 wt.% of TiO2 was added, showing that the nanoparticles acted as nucleating agents this trend was confirmed by optical images. The elastic modulus increased ~54% compared to neat PLA at 5 wt.% of nanoparticles. Despite these improvements, PLA/TiO2 nanocomposites showed lower shear viscosity than neat PLA, possibly reflecting degradation of the polymer due to the particles. Regarding biocidal properties, after 2h of contact the PLA/TiO2 composites with 8 wt.% TiO2 showed a reduction of Escherichia coli colonies of ~82% under no UVA irradiation compared to pure PLA. This biocidal characteristic can be increased under UVA irradiation, with nanocomposites containing 8 wt.% TiO2 killing 94% of the bacteria. The PLA/TiO2 nanocomposites with 8 wt.% were also 99.99% effective against Aspergillus fumigatus under the UVA irradiation.


Asunto(s)
Antibacterianos/farmacología , Antifúngicos/farmacología , Aspergillus fumigatus/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Ácido Láctico/química , Polímeros/química , Titanio/farmacología , Antibacterianos/síntesis química , Antifúngicos/síntesis química , Supervivencia Celular/efectos de los fármacos , Escherichia coli/fisiología , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Nanocápsulas/administración & dosificación , Nanocápsulas/química , Nanocápsulas/ultraestructura , Nanocompuestos/administración & dosificación , Nanocompuestos/química , Poliésteres , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA