Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Bioinformatics ; 25(1): 58, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317062

RESUMEN

BACKGROUND: Data from microbiomes from multiple niches is often collected, but methods to analyse these often ignore associations between niches. One interesting case is that of the oral microbiome. Its composition is receiving increasing attention due to reports on its associations with general health. While the oral cavity includes different niches, multi-niche microbiome data analysis is conducted using a single niche at a time and, therefore, ignores other niches that could act as confounding variables. Understanding the interaction between niches would assist interpretation of the results, and help improve our understanding of multi-niche microbiomes. METHODS: In this study, we used a machine learning technique called latent Dirichlet allocation (LDA) on two microbiome datasets consisting of several niches. LDA was used on both individual niches and all niches simultaneously. On individual niches, LDA was used to decompose each niche into bacterial sub-communities unveiling their taxonomic structure. These sub-communities were then used to assess the relationship between microbial niches using the global test. On all niches simultaneously, LDA allowed us to extract meaningful microbial patterns. Sets of co-occurring operational taxonomic units (OTUs) comprising those patterns were then used to predict the original location of each sample. RESULTS: Our approach showed that the per-niche sub-communities displayed a strong association between supragingival plaque and saliva, as well as between the anterior and posterior tongue. In addition, the LDA-derived microbial signatures were able to predict the original sample niche illustrating the meaningfulness of our sub-communities. For the multi-niche oral microbiome dataset we had an overall accuracy of 76%, and per-niche sensitivity of up to 83%. Finally, for a second multi-niche microbiome dataset from the entire body, microbial niches from the oral cavity displayed stronger associations to each other than with those from other parts of the body, such as niches within the vagina and the skin. CONCLUSION: Our LDA-based approach produces sets of co-occurring taxa that can describe niche composition. LDA-derived microbial signatures can also be instrumental in summarizing microbiome data, for both descriptions as well as prediction.


Asunto(s)
Microbiota , Femenino , Humanos , Boca/microbiología , Bacterias/genética , Saliva , Piel/microbiología
2.
Int Endod J ; 56(6): 748-764, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36916216

RESUMEN

AIM: To explore microbial differences in the endodontic infection of teeth with primary or secondary apical periodontitis (AP), with or without symptomatology. Additionally, to investigate if these differences are depicted in immunologic markers in blood. METHODOLOGY: Twenty-nine teeth with primary or secondary AP were extracted and cryo-pulverized. Blood was drawn from the subjects at three different time-points before and three time-points after the extraction in a time period of four months. The V4 hypervariable region of the 16S rRNA gene was sequenced using Illumina MiSeq. The microbial profiles were ordinated using principal component analysis and tested for differences between groups with permutational multivariate analysis of variance using the Bray-Curtis distance. If significantly different, the microbial profiles were further analysed using the LDA effect size (LEfSe) biomarker discovery tool. A broad panel of inflammatory mediators in blood was examined longitudinally in all subjects during the six visits with mixed models. The Spearman correlation between these mediators and the zOTUs was calculated, and significant correlations (p < .05) were used as input for significant analysis of microarrays (SAM) using MeV. RESULTS: After subsampling, the 467 zOTUs were classified into 9 phyla and 99 genera or higher level taxa. The predominant genus in the entire sample set was Fusobacterium with a relative abundance of 12.3%, followed by Prevotella (9.9%), Actinomyces (7.7%) and Streptococcus (6.7%). The microbiomes of the endodontic infections were significantly associated with endodontic status (primary/secondary infection; p = .015) as well as with the presence or absence of pain (p = .011). There was also a difference in the concentration of inflammatory mediators, namely, C-reactive protein, Interleukin (IL)-8, IL-10, IL-12p70, RANKL and TNF-α, depending on the existence of pain. In addition, the presence of specific bacteria (zOTUs) was correlated, positively or negatively, with the expression of several circulating inflammatory markers. CONCLUSIONS: The microbial profiles and the concentration-time relationship of systemic inflammatory mediators of primary endodontic infection differed from those of secondary, and of symptomatic from those of asymptomatic cases. The fingerprint of associations between the immunological and microbiological profiles differed between asymptomatic and symptomatic patients.


Asunto(s)
Microbiota , Periodontitis Periapical , Humanos , ARN Ribosómico 16S/genética , Periodontitis Periapical/microbiología , Biomarcadores , Mediadores de Inflamación
3.
J Clin Periodontol ; 49(1): 28-38, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34664294

RESUMEN

AIM: To assess the microbial effects of mechanical debridement in conjunction with a mouthrinse on sites with peri-implant mucositis and gingivitis. MATERIALS AND METHODS: Eighty-nine patients with peri-implant mucositis were included in a double-blinded, randomized, placebo-controlled trial with mechanical debridement and 1-month use of either delmopinol, chlorhexidine (CHX), or a placebo mouthrinse. Submucosal and subgingival plaque samples of implants and teeth were collected at baseline and after 1 and 3 months, processed for 16S V4 rRNA gene amplicon sequencing, and analysed bioinformatically. RESULTS: The sites with peri-implant mucositis presented with a less diverse and less anaerobic microbiome. Exposure to delmopinol or CHX, but not to the placebo mouthrinse resulted in microbial changes after 1 month. The healthy sites around the teeth harboured a more diverse and more anaerobe-rich microbiome than the healthy sites around the implants. CONCLUSIONS: Peri-implant sites with mucositis harbour ecologically less complex and less anaerobic biofilms with lower biomass than patient-matched dental sites with gingivitis while eliciting an equal inflammatory response. Adjunctive antimicrobial therapy in addition to mechanical debridement does affect both dental and peri-implant biofilm composition in the short term, resulting in a less dysbiotic subgingival biofilm.


Asunto(s)
Implantes Dentales , Placa Dental , Microbiota , Mucositis , Periimplantitis , Implantes Dentales/efectos adversos , Humanos , Periimplantitis/terapia
4.
Eur J Oral Sci ; 130(2): e12858, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35218587

RESUMEN

In general, saliva is used for microbiota analysis in longitudinal studies, and several collection methods are being used. Using a robust sample collection procedure is important, as it may influence salivary composition. This study explored the comparability of the microbiota of swabbed and spit saliva. Twenty-two females participated in this cross-sectional study. The bacterial composition of the three saliva samples (swab collected by the participant (SW-P), swab collected by the researcher (SW-R), and spit (SP) was assessed by 16S rRNA gene amplicon sequencing. The bacterial composition of the swabbed and the spit saliva was significantly different irrespective of the operator, and Shannon diversity was significantly higher in spit saliva than in SW-P and SW-R. The salivary microbiota of spit and swabbed adult saliva differs significantly. Research on microbial composition therefore requires collection of similar saliva sample types in all study participants.


Asunto(s)
Microbiota , Saliva , Adulto , Bacterias , Estudios Transversales , Femenino , Humanos , ARN Ribosómico 16S/genética
5.
J Clin Periodontol ; 48(9): 1228-1239, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34101220

RESUMEN

AIM: To study the peri-implant submucosal microbiome in relation to implant disease status, dentition status, smoking habit, gender, implant location, implant system, time of functional loading, probing pocket depth (PPD), and presence of bleeding on probing. MATERIALS AND METHODS: Biofilm samples were collected from the deepest peri-implant site of 41 patients with paper points, and analysed using 16S rRNA gene pyrosequencing. RESULTS: We observed differences in microbial profiles by PPD, implant disease status, and dentition status. Microbiota in deep pockets included higher proportions of the genera Fusobacterium, Prevotella, and Anaeroglobus compared with shallow pockets that harboured more Rothia, Neisseria, Haemophilus, and Streptococcus. Peri-implantitis (PI) sites were dominated by Fusobacterium and Treponema compared with healthy implants and peri-implant mucositis, which were mostly colonized by Rothia and Streptococcus. Partially edentulous (PE) individuals presented more Fusobacterium, Prevotella, and Rothia, whereas fully edentulous individuals presented more Veillonella and Streptococcus. CONCLUSIONS: PPD, implant disease status, and dentition status may affect the submucosal ecology leading to variation in composition of the microbiome. Deep pockets, PI, and PE individuals were dominated by Gram-negative anaerobic taxa.


Asunto(s)
Implantes Dentales , Microbiota , Periimplantitis , Estudios Transversales , Humanos , ARN Ribosómico 16S/genética
6.
J Periodontal Res ; 54(4): 405-412, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30734922

RESUMEN

BACKGROUND AND OBJECTIVE: Metal-based dental restorations with a subgingival outline may enhance plaque accumulation and bacterial colonization. This study aimed to investigate whether metal-based restorations influence the composition of subgingival microbiome. MATERIAL AND METHODS: Per subject one site with a metal-based restoration and one contra-lateral site without a restoration were selected on basis of radiographic bone loss ≤2 mm, restoration outline at sulcus level/subgingivally, pocket depth ≤4 mm, and no root canal treatments. Subgingival samples were collected with sterile paper-points, and microbial profiles were obtained by 16S rRNA gene amplicon sequencing. Restorations were sampled with an Arkansas-stone and the metal composition was determined using energy-dispersive X-ray spectroscopy. RESULTS: A total of 22 sites from 11 subjects were included. No significant differences for the clinical parameters were found between the restored and unrestored sites. The average age of the restorations was 14.9 ± 7.1 years. Firmicutes was the most prevalent phylum at the restored sites (32% vs 20% of the reads of the unrestored sites, P = 0.016), and Actinobacteria at the unrestored sites (33% vs 18% of the reads of the restored sites, P = 0.01). Overall, sequences clustered into 573 operational taxonomic units (OTUs). Species richness of the restored sites was significantly higher than species richness of the unrestored sites (117 ± 32 and 96 ± 20 OTUs, respectively, P = 0.013). No associations between the metal composition and bacterial profiles were found. CONCLUSION: This study shows that metal-based restorations may enhance colonization of Firmicutes and the neighboring pocket may harbor more diverse microbial communities.


Asunto(s)
Actinobacteria/clasificación , Materiales Dentales/química , Firmicutes/clasificación , Encía/microbiología , Metales/química , Microbiota , Adulto , Estudios Transversales , Placa Dental/microbiología , Restauración Dental Permanente , Femenino , Humanos , Masculino , Persona de Mediana Edad , ARN Ribosómico 16S/genética
7.
Caries Res ; 53(5): 514-526, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30947169

RESUMEN

In recent years, the concept of preventing caries-related microbial dysbiosis by enhancing the growth and survival of health-associated oral microbiota has emerged. In this article, the current evidence for the role of oral pre- and probiotics in caries prevention and caries management is discussed. Prebiotics are defined as "substrates that are selectively utilized by host microorganisms conferring a health benefit." With regard to caries, this would include alkali-generating substances such as urea and arginine, which are metabolized by some oral bacteria, resulting in ammonia production and increase in pH. While there is no evidence that urea added to chewing gums or mouth rinses significantly contributes to caries inhibition, multiple studies have shown that arginine in consumer products can exert an inhibitory effect on the caries process. Probiotics are "live microorganisms which when administrated in adequate amounts confer a health benefit on the host." Clinical trials have suggested that school-based programs with milk supplemented with probiotics and probiotic lozenges can reduce caries development in preschool children and in schoolchildren with high caries risk. Due to issues with research ethics (prebiotics) and risk of bias (prebiotics, probiotics), the confidence in the effect estimate is however limited. Further long-term clinical studies are needed with orally derived probiotic candidates, including the health-economic perspectives. In particular, the development and evaluation of oral synbiotic products, containing both prebiotics and a probiotic, would be of interest in the future management of dental caries.


Asunto(s)
Caries Dental/prevención & control , Microbiota , Boca/microbiología , Prebióticos , Probióticos , Bacterias , Niño , Ensayos Clínicos como Asunto , Humanos
8.
BMC Oral Health ; 19(1): 212, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31511002

RESUMEN

BACKGROUND: This systematic scoping review aimed to identify changes in biomarkers of microbiological, immunological and biochemical origin during experimental gingivitis (EG) studies that might indicate resistance and resilience. METHODS: The term 'experimental gingivitis' was run in PubMed from inception to April 11th, 2018. From the 411 studies retrieved, 22 studies were included for this review. RESULTS: Studies reporting data on biomarker changes during and after full mouth EG trial were included. Two studies reported findings on changes in biomarkers of microbiological, 12 on immunological and eight on biochemical origin. Changes were reported in the induction phase, and occasionally in the resolution phase. The microbiological composition of both supragingival and subgingival dental plaque changed over the course of EG to a more pathogenic direction, but showed a shift back to a more normal composition. This indicates resilience of the oral microbiome. For immunological biomarkers, it was challenging to retrieve a robust pattern of changes across multiple studies. IL-1ß and IL-6 in saliva and in gingival crevicular fluid increased during induction phase and returned in the resolution phase below baseline values. The biochemical parameters cystatin-SN, cystatin-S and lactoferrin in saliva were increased at the end of induction phase, however also here no clear pattern emerged based on all available studies. CONCLUSIONS: More research is needed to investigate which microbiological, immunological, and biochemical biomarkers can be useful for future investigations into the resistance and resilience of the oral cavity to experimental gingivitis.


Asunto(s)
Placa Dental , Gingivitis , Adolescente , Adulto , Anciano , Animales , Niño , Femenino , Líquido del Surco Gingival , Humanos , Masculino , Microbiota , Índice Periodontal , Factor A de Crecimiento Endotelial Vascular , Adulto Joven
9.
Bioinformatics ; 32(11): 1678-85, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26342232

RESUMEN

MOTIVATION: The human microbiome plays a key role in health and disease. Thanks to comparative metatranscriptomics, the cellular functions that are deregulated by the microbiome in disease can now be computationally explored. Unlike gene-centric approaches, pathway-based methods provide a systemic view of such functions; however, they typically consider each pathway in isolation and in its entirety. They can therefore overlook the key differences that (i) span multiple pathways, (ii) contain bidirectionally deregulated components, (iii) are confined to a pathway region. To capture these properties, computational methods that reach beyond the scope of predefined pathways are needed. RESULTS: By integrating an existing module discovery algorithm into comparative metatranscriptomic analysis, we developed metaModules, a novel computational framework for automated identification of the key functional differences between health- and disease-associated communities. Using this framework, we recovered significantly deregulated subnetworks that were indeed recognized to be involved in two well-studied, microbiome-mediated oral diseases, such as butanoate production in periodontal disease and metabolism of sugar alcohols in dental caries. More importantly, our results indicate that our method can be used for hypothesis generation based on automated discovery of novel, disease-related functional subnetworks, which would otherwise require extensive and laborious manual assessment. AVAILABILITY AND IMPLEMENTATION: metaModules is available at https://bitbucket.org/alimay/metamodules/ CONTACT: a.may@vu.nl or s.abeln@vu.nl SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Microbiota , Algoritmos , Caries Dental , Humanos
10.
J Clin Periodontol ; 44 Suppl 18: S12-S22, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28266111

RESUMEN

BACKGROUND: The oral microbiome is diverse and exists as multispecies microbial communities on oral surfaces in structurally and functionally organized biofilms. AIM: To describe the network of microbial interactions (both synergistic and antagonistic) occurring within these biofilms and assess their role in oral health and dental disease. METHODS: PubMed database was searched for studies on microbial ecological interactions in dental biofilms. The search results did not lend themselves to systematic review and have been summarized in a narrative review instead. RESULTS: Five hundred and forty-seven original research articles and 212 reviews were identified. The majority (86%) of research articles addressed bacterial-bacterial interactions, while inter-kingdom microbial interactions were the least studied. The interactions included physical and nutritional synergistic associations, antagonism, cell-to-cell communication and gene transfer. CONCLUSIONS: Oral microbial communities display emergent properties that cannot be inferred from studies of single species. Individual organisms grow in environments they would not tolerate in pure culture. The networks of multiple synergistic and antagonistic interactions generate microbial inter-dependencies and give biofilms a resilience to minor environmental perturbations, and this contributes to oral health. If key environmental pressures exceed thresholds associated with health, then the competitiveness among oral microorganisms is altered and dysbiosis can occur, increasing the risk of dental disease.


Asunto(s)
Biopelículas , Interacciones Microbianas , Enfermedades de la Boca/microbiología , Salud Bucal , Diente/microbiología , Humanos , Microbiota
11.
J Clin Periodontol ; 44 Suppl 18: S5-S11, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28266109

RESUMEN

BACKGROUND AND AIMS: The scope of this working group was to review (1) ecological interactions at the dental biofilm in health and disease, (2) the role of microbial communities in the pathogenesis of periodontitis and caries, and (3) the innate host response in caries and periodontal diseases. RESULTS AND CONCLUSIONS: A health-associated biofilm includes genera such as Neisseria, Streptococcus, Actinomyces, Veillonella and Granulicatella. Microorganisms associated with both caries and periodontal diseases are metabolically highly specialized and organized as multispecies microbial biofilms. Progression of these diseases involves multiple microbial interactions driven by different stressors. In caries, the exposure of dental biofilms to dietary sugars and their fermentation to organic acids results in increasing proportions of acidogenic and aciduric species. In gingivitis, plaque accumulation at the gingival margin leads to inflammation and increasing proportions of proteolytic and often obligately anaerobic species. The natural mucosal barriers and saliva are the main innate defence mechanisms against soft tissue bacterial invasion. Similarly, enamel and dentin are important hard tissue barriers to the caries process. Given that the present state of knowledge suggests that the aetiologies of caries and periodontal diseases are mutually independent, the elements of innate immunity that appear to contribute to resistance to both are somewhat coincidental.


Asunto(s)
Biopelículas , Caries Dental/microbiología , Salud Bucal , Periodontitis/microbiología , Interacciones Huésped-Patógeno , Humanos
12.
Clin Oral Investig ; 21(4): 1221-1230, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27337976

RESUMEN

OBJECTIVE: The aim of this study was to determine the effect of an oxygenating mouthwash compared to two other established mouthwash products on bacterial composition and metabolic activity of oral biofilms in vitro. MATERIAL AND METHODS: Twelve healthy subjects participated as donors. Plaque-saliva mixture inoculated biofilms were grown and treated with 3 different chemotherapeutic mouthwashes [amine fluoride/stannous fluoride (MD), oxygenating agent (AX), chlorhexidine 0.12 % (PA), and water (W)]. Effects of treatments were assessed on biofilm composition (16S rRNA gene amplicon sequencing), production of organic acids (formate, acetate, lactate, propionate, butyrate using capillary electrophoresis), and viability of the remaining biofilm (CFUs). RESULTS: Microbial profiles of biofilms clustered per inoculum donor and were dominated by the genera Veillonella, Streptococcus, and Prevotella. Microbial diversity was only reduced after PA treatment. Significant changes in composition occurred after treatment with AX, resulting in lower proportions of Veillonella and higher proportions of non-mutans streptococci. Production of all organic acids after PA and lactate after MD was significantly lower as compared to W. AX resulted in reduction of acetate, butyrate, and propionate and increase in lactate production (p < 0.05). Viable counts were significantly lower after PA and AX treatments compared to W, while no significant reduction was observed after MD. CONCLUSIONS: All studied mouthwashes affected the in vitro biofilms differently. The effects of the AX treatment were the most prominent which resulted in changes of the bacterial composition and metabolism. CLINICAL IMPLICATIONS: Awareness by the dental team that mouthwashes can change the bacterial composition and metabolism is important when advising its use.


Asunto(s)
Biopelículas/efectos de los fármacos , Antisépticos Bucales/farmacología , Adulto , Aminas/farmacología , Antiinfecciosos Locales/farmacología , Clorhexidina/farmacología , Combinación de Medicamentos , Femenino , Fluoruros Tópicos/farmacología , Humanos , Técnicas In Vitro , Masculino , Metagenoma , Pruebas de Sensibilidad Microbiana , Persona de Mediana Edad , Oxidantes/farmacología , Fluoruros de Estaño/farmacología
13.
Clin Oral Investig ; 21(5): 1871-1881, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27771826

RESUMEN

OBJECTIVES: Bacterial infection of the root canal system causes apical periodontitis. Less is known about the role of fungi in these infections. This study aimed to assess the fungal prevalence, abundance, and diversity of root canal infections, as well as the relation between fungi and bacteria present in different parts of the root canal. MATERIALS AND METHODS: Twenty-six teeth with primary apical periodontitis were extracted, split in apical and coronal root segments, and cryo-pulverized. Bacteriome profiles of 23 teeth were analyzed based on the V3-V4 hypervariable region of the 16S ribosomal RNA gene. Mycobiome profiles of six teeth were analyzed based on the internal transcribed spacer (ITS) 1 or ITS2 region. Samples were sequenced on the Illumina MiSeq platform. RESULTS: A total of 338 bacterial operational taxonomic units (OTUs), 28 ITS1 OTUs, and 24 ITS2 OTUs were identified. Candida and Malassezia were the most frequently identified fungi. No differences could be found between the bacteriome and mycobiome profiles of the apical and coronal root segments. The bacteriome of fungi-positive root segments contained more Actinomyces, Bifidobacterium, four different Lactobacillus OTUs, Propionibacterium, and Streptococcus. A Spearman correlation matrix between bacteriomes and mycobiomes identified no correlations, but separate clusters could be observed. CONCLUSIONS: A considerable proportion of the root canal infections contain fungi, although fungal diversity is limited. However, when fungi are present, the composition of the bacteriome is clearly different. CLINICAL RELEVANCE: Interaction between bacteria and fungi in root canal infections may complicate the infection and require alternative treatment strategies.


Asunto(s)
Bacterias/clasificación , Micobioma , Periodontitis Periapical/microbiología , ADN Bacteriano/análisis , ADN de Hongos/análisis , Humanos , Técnicas In Vitro , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S
14.
Vet Res ; 47: 49, 2016 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-27080859

RESUMEN

Equine periodontal disease is a common and painful condition and its severe form, periodontitis, can lead to tooth loss. Its aetiopathogenesis remains poorly understood despite recent increased awareness of this disorder amongst the veterinary profession. Bacteria have been found to be causative agents of the disease in other species, but current understanding of their role in equine periodontitis is extremely limited. The aim of this study was to use high-throughput sequencing to identify the microbiome associated with equine periodontitis and oral health. Subgingival plaque samples from 24 horses with periodontitis and gingival swabs from 24 orally healthy horses were collected. DNA was extracted from samples, the V3-V4 region of the bacterial 16S rRNA gene amplified by PCR and amplicons sequenced using Illumina MiSeq. Data processing was conducted using USEARCH and QIIME. Diversity analyses were performed with PAST v3.02. Linear discriminant analysis effect size (LEfSe) was used to determine differences between the groups. In total, 1308 OTUs were identified and classified into 356 genera or higher taxa. Microbial profiles at health differed significantly from periodontitis, both in their composition (p < 0.0001, F = 12.24; PERMANOVA) and in microbial diversity (p < 0.001; Mann-Whitney test). Samples from healthy horses were less diverse (1.78, SD 0.74; Shannon diversity index) and were dominated by the genera Gemella and Actinobacillus, while the periodontitis group samples showed higher diversity (3.16, SD 0.98) and were dominated by the genera Prevotella and Veillonella. It is concluded that the microbiomes associated with equine oral health and periodontitis are distinct, with the latter displaying greater microbial diversity.


Asunto(s)
Bacterias/clasificación , Enfermedades de los Caballos/microbiología , Microbiota , Boca/microbiología , Salud Bucal , Periodontitis/veterinaria , Animales , Bacterias/genética , ADN Bacteriano/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Caballos , Masculino , Periodontitis/microbiología , ARN Ribosómico 16S/genética , Escocia
15.
Microb Ecol ; 72(2): 479-92, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27155967

RESUMEN

Nitrate is emerging as a possible health benefactor. Especially the microbial conversion of nitrate to nitrite in the oral cavity and the subsequent conversion to nitric oxide in the stomach are of interest in this regard. Yet, how nitrate influences the composition and biochemistry of the oral ecosystem is not fully understood. To investigate the effect of nitrate on oral ecology, we performed a 4-week experiment using the multiplaque artificial mouth (MAM) biofilm model. This model was inoculated with stimulated saliva of two healthy donors. Half of the microcosms (n = 4) received a constant supply of nitrate, while the other half functioned as control (n = 4). Additionally, all microcosms received a nitrate and sucrose pulse, each week, on separate days to measure nitrate reduction and acid formation. The bacterial composition of the microcosms was determined by 16S rDNA sequencing. The origin of the saliva (i.e., donor) showed to be the strongest determinant for the development of the microcosms. The supplementation of nitrate was related to a relatively high abundance of Neisseria in the microcosms of both donors, while Veillonella was highly abundant in the nitrate-supplemented microcosms of only one of the donors. The lactate concentration after sucrose addition was similarly high in all microcosms, irrespective of treatment or donor, while the concentration of butyrate was lower after nitrate addition in the nitrate-receiving microcosms. In conclusion, nitrate influences the composition and biochemistry of oral microcosms, although the result is strongly dependent on the inoculum.


Asunto(s)
Bacterias/clasificación , Ácidos Grasos Volátiles/biosíntesis , Nitratos/análisis , Saliva/microbiología , Adulto , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Biomasa , Butiratos/análisis , Femenino , Genes Bacterianos , Genómica , Humanos , Masculino , Neisseria/genética , Neisseria/aislamiento & purificación , Neisseria/metabolismo , Nitritos/análisis , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Sacarosa/análisis , Veillonella/genética , Veillonella/aislamiento & purificación , Veillonella/metabolismo , Adulto Joven
16.
Microb Ecol ; 69(2): 422-33, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25433583

RESUMEN

Dysbiosis induced by low pH in the oral ecosystem can lead to caries, a prevalent bacterial disease in humans. The amino acid arginine is one of the pH-elevating agents in the oral cavity. To obtain insights into the effect of arginine on oral microbial ecology, a multi-plaque "artificial mouth" (MAM) biofilm model was inoculated with saliva from a healthy volunteer and microcosms were grown for 4 weeks with 1.6 % (w/v) arginine supplement (Arginine) or without (Control), samples were taken at several time-points. A cariogenic environment was mimicked by sucrose pulsing. The bacterial composition was determined by 16S rRNA gene amplicon sequencing, the presence and amount of Candida and arginine deiminase system genes arcA and sagP by qPCR. Additionally, ammonium and short-chain fatty acid concentrations were determined. The Arginine microcosms were dominated by Streptococcus, Veillonella, and Neisseria and remained stable in time, while the composition of the Control microcosms diverged significantly in time, partially due to the presence of Megasphaera. The percentage of Candida increased 100-fold in the Control microcosms compared to the Arginine microcosms. The pH-raising effect of arginine was confirmed by the pH and ammonium results. The abundances of sagP and arcA were highest in the Arginine microcosms, while the concentration of butyrate was higher in the Control microcosms. We demonstrate that supplementation with arginine serves a health-promoting function; it enhances microcosm resilience toward acidification and suppresses outgrowth of the opportunistic pathogen Candida. Arginine facilitates stability of oral microbial communities and prevents them from becoming cariogenic.


Asunto(s)
Arginina/farmacología , Bacterias/efectos de los fármacos , Candida/crecimiento & desarrollo , Boca/microbiología , Bacterias/crecimiento & desarrollo , Bacterias/aislamiento & purificación , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Candida/efectos de los fármacos , ADN Bacteriano/genética , Caries Dental/tratamiento farmacológico , Caries Dental/microbiología , Genes Bacterianos , Humanos , Concentración de Iones de Hidrógeno , Hidrolasas/genética , Hidrolasas/metabolismo , Neisseria/efectos de los fármacos , Neisseria/crecimiento & desarrollo , ARN Ribosómico 16S/genética , Saliva/microbiología , Análisis de Secuencia de ADN , Streptococcus/efectos de los fármacos , Streptococcus/crecimiento & desarrollo , Veillonella/efectos de los fármacos , Veillonella/crecimiento & desarrollo
17.
Caries Res ; 49 Suppl 1: 55-61, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25871419

RESUMEN

During the last century, dental research has focused on unraveling the mechanisms behind various oral pathologies, while oral health was typically described as the mere absence of oral diseases. The term 'oral microbial homeostasis' is used to describe the capacity of the oral ecosystem to maintain microbial community stability in health. However, the oral ecosystem itself is not stable: throughout life an individual undergoes multiple physiological changes while progressing through infancy, childhood, adolescence, adulthood and old age. Recent discussions on the definition of general health have led to the proposal that health is the ability of the individual to adapt to physiological changes, a condition known as allostasis. In this paper the allostasis principle is applied to the oral ecosystem. The multidimensionality of the host factors contributing to allostasis in the oral cavity is illustrated with an example on changes occurring in puberty. The complex phenomenon of oral health and the processes that prevent the ecosystem from collapsing during allostatic changes in the entire body are far from being understood. As yet individual components (e.g. hard tissues, microbiome, saliva, host response) have been investigated, while only by consolidating these and assessing their multidimensional interactions should we be able to obtain a comprehensive understanding of the ecosystem, which in turn could serve to develop rational schemes to maintain health. Adapting such a 'system approach' comes with major practical challenges for the entire research field and will require vast resources and large-scale multidisciplinary collaborations.


Asunto(s)
Adaptación Fisiológica/fisiología , Alostasis/fisiología , Salud Bucal , Envejecimiento/fisiología , Estado de Salud , Homeostasis/fisiología , Humanos , Microbiota/fisiología , Boca/microbiología , Pubertad/fisiología
18.
BMC Complement Altern Med ; 14: 75, 2014 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-24564835

RESUMEN

BACKGROUND: In previous works we have shown that a low-molecular-mass (LMM) fraction from mushroom (Lentinus edodes) homogenate interferes with binding of Streptococcus mutans to hydroxyapatite and Prevotella intermedia to gingival cells. Additionally, inhibition of biofilm formation of both odonto- and periodonto-pathogenic bacteria and detachment from preformed biofilms have been described for this compound. Further purification of mushroom extract has been recently achieved and a sub-fraction (i.e. # 5) has been identified as containing the majority of the mentioned biological activities. The aim of this study was to characterise the bacterial receptors for the purified mushroom sub-fraction #5 in order to better elucidate the mode of action of this compound when interfering with bacterial adhesion to host surfaces or with bacteria-bacteria interactions in the biofilm state. METHODS: Candidate bacterial molecules to act as target of this compound were bacterial surface molecules involved in cell adhesion and biofilm formation, and, thus, we have considered cell wall associated proteins (CWPs), teichoic acid (TA) and lipoteichoic acid (LTA) of S. mutans, and outer membrane proteins (OMPs) and lipopolysaccharide (LPS) of P. intermedia. RESULTS: Fifteen S. mutans CWPs and TA were capable of binding sub-fraction #5, while LTA did not. As far as P. intermedia is concerned, we show that five OMPs interact with sub-fraction # 5. Capacity of binding to P. intermedia LPS was also studied but in this case negative results were obtained. CONCLUSIONS: Binding sub-fraction # 5 to surface molecules of S. mutans or P. intermedia may result in inactivation of their physiological functions. As a whole, these results indicate, at molecular level, the bacterial surface alterations affecting adhesion and biofim formation. For these antimicrobial properties, the compound may find use in daily oral hygiene.


Asunto(s)
Antibacterianos/farmacología , Bacterias/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Productos Biológicos/farmacología , Caries Dental/microbiología , Gingivitis/microbiología , Hongos Shiitake , Agaricales , Proteínas Bacterianas/metabolismo , Biopelículas/efectos de los fármacos , Caries Dental/tratamiento farmacológico , Gingivitis/tratamiento farmacológico , Lipopolisacáridos/metabolismo , Proteínas de la Membrana/metabolismo , Prevotella/efectos de los fármacos , Streptococcus mutans/efectos de los fármacos , Ácidos Teicoicos/metabolismo
19.
Clin Oral Investig ; 18(5): 1419-26, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24100637

RESUMEN

OBJECTIVES: The aim of the present study was to measure the effects of a 5,000-ppm F toothpaste on caries-related factors in dental plaque and saliva. MATERIALS AND METHODS: A 6-week clinical trial was designed with a total of 34 participants, of which 26 completed the study. The participants were assessed on four visits, 2 weeks apart. Sampling of approximal fluid for fluoride analysis and approximal plaque for organic acid analysis was performed. Chair-side tests were performed to register the lactic acid production rate on the tongue using Clinpro™ Cario L-Pop™, approximal plaque pH using the pH "strip method" and salivary buffer capacity and counts of cariogenic microorganisms using CRT Buffer(®) and CRT Bacteria(®). RESULTS: Six weeks' use of 5,000-ppm fluoridated (F) toothpaste significantly increased the approximal fluid F concentration (p < 0.05). There was a significant decrease in lactic acid production rate on the tongue assessed by Clinpro™ (p < 0.05). This was accompanied by changes in interproximal plaque acidogenicity, including significant reductions in AUC(5.7), AUC(6.2) and maximum pH fall and an increase in minimum pH (p < 0.05). A significant increase in the salivary buffer capacity and a reduction in the salivary mutans streptococci were observed (p < 0.05). CONCLUSION: The present study demonstrates the ability of 5,000-ppm F toothpaste to modify caries-related factors in dental plaque and saliva. CLINICAL RELEVANCE: The 5,000-ppm F toothpaste could be regarded as a possible effective regimen against caries in the near future.


Asunto(s)
Caries Dental/fisiopatología , Placa Dental , Dentífricos , Fluoruros/administración & dosificación , Saliva , Adolescente , Humanos
20.
J Oral Microbiol ; 16(1): 2369350, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919384

RESUMEN

Introduction: The aim of the study was to evaluate the modulating effects of five commonly used sweetener (glucose, inulin, isomaltulose, tagatose, trehalose) containing mouth rinses on the oral microbiome. Methods: A single-centre, double-blind, parallel randomized clinical trial was performed with healthy, 18-55-year-old volunteers (N = 65), who rinsed thrice-daily for two weeks with a 10% solution of one of the allocated sweeteners. Microbiota composition of supragingival dental plaque and the tongue dorsum coating was analysed by 16S RNA gene amplicon sequencing of the V4 hypervariable region (Illumina MiSeq). As secondary outcomes, dental plaque red fluorescence and salivary pH were measured. Results: Dental plaque microbiota changed significantly for two groups: inulin (F = 2.0239, p = 0.0006 PERMANOVA, Aitchison distance) and isomaltulose (F = 0.67, p = 0.0305). For the tongue microbiota, significant changes were observed for isomaltulose (F = 0.8382, p = 0.0452) and trehalose (F = 1.0119, p = 0.0098). In plaque, 13 species changed significantly for the inulin group, while for tongue coating, three species changed for the trehalose group (ALDEx2, p < 0.1). No significant changes were observed for the secondary outcomes. Conclusion: The effects on the oral microbiota were sweetener dependant with the most pronounced effect on plaque microbiota. Inulin exhibited the strongest microbial modulating potential of the sweeteners tested. Further full-scale clinical studies are required.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA