Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Environ Manage ; 351: 119922, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38150929

RESUMEN

Layered double hydroxides (LDHs) have gained significant recognition for their facile synthesis and super-hydrophilic two-dimensional (2D) structure to fabricate antifouling membranes for oily wastewater separation. However, conventional PVDF membranes, due to their hydrophobic nature and inert matrix, often exhibit insufficient permeance and compatibility. In this study, a novel NiFe-LDH@MnO2/PVDF membrane was synthesized using ultrasonic, redox, and microwave-hydrothermal processes. This innovative approach cultivated grass-like NiFe-LDH@MnO2 nanoparticles within an inert PVDF matrix, promoting the growth of highly hydrophilic composites. The presence of NiFe-LDH@MnO2 resulted in pronounced enhancements in surface morphology, interfacial wettability, and oil rejection for the fabricated membrane. The optimal NiFe-LDH@MnO2/PVDF-2 membrane exhibited an extremely high pure water flux (1364 L m-2•h-1), and increased oil rejection (from 81.2% to 93.5%) without sacrificing water permeation compared to the original PVDF membrane. Additionally, the NiFe-LDH@MnO2/PVDF membrane demonstrated remarkable antifouling properties, evident by an exceptional fouling resistance ratio of 96.8% following slight water rinsing. Mechanistic insights into the enhanced antifouling performance were elucidated through a comparative "semi-immersion" investigation. The facile synthesis method, coupled with the improved membrane performance, highlights the potential application prospects of this hybrid membrane in emulsified oily wastewater treatment and environmental remediation.


Asunto(s)
Incrustaciones Biológicas , Polímeros de Fluorocarbono , Polivinilos , Purificación del Agua , Compuestos de Manganeso , Óxidos , Aceites , Agua , Purificación del Agua/métodos
2.
Environ Pollut ; 356: 124319, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38844042

RESUMEN

The presence of microplastics in the ecological environment, serving as carriers for other organic pollutants, has garnered widespread attention. These microplastics exposed in the environment may undergo various aging processes. However, there is still a lack of information regarding how these aged microplastics impact the environmental behavior and ecological toxicity of pollutants. In this study, we modified polystyrene microplastics by simulating the aging behavior that may occur under environmental exposure, and then explored the adsorption behavior and adsorption mechanism of microplastics before and after aging for typical triazine herbicides. It was shown that all aging treatments of polystyrene increased the adsorption of herbicides, the composite aged microplastics had the strongest adsorption capacity and the fastest adsorption rate, and of the three herbicides, metribuzin was adsorbed the most by microplastics. The interactions between microplastics and herbicides involved mechanisms such as hydrophobic interactions, surface adsorption, the effect of π-π interactions, and the formation of hydrogen bonds. Further studies confirmed that microplastics adsorbed with herbicides cause greater biotoxicity to E. coli. These findings elucidate the interactions between microplastics before and after aging and triazine herbicides. Acting as carriers, they alter the environmental behavior and ecological toxicity of organic pollutants, providing theoretical support for assessing the ecological risk of microplastics in water environments.


Asunto(s)
Microplásticos , Poliestirenos , Triazinas , Contaminantes Químicos del Agua , Microplásticos/química , Microplásticos/toxicidad , Poliestirenos/química , Triazinas/química , Triazinas/toxicidad , Adsorción , Contaminantes Químicos del Agua/química , Herbicidas/química , Plaguicidas/química
3.
J Hazard Mater ; 474: 134844, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38852252

RESUMEN

With advances in plastic resource utilization technologies, polystyrene (PS) and sulfonated polystyrene (SPS) microplastics continue to be produced and retained in environmental media, potentially posing greater environmental risks. These plastics, due to their different physicochemical properties, may have different environmental impacts when compounded with other pollutants. The objective of this study was to investigate the combined toxic effects of PS and SPS on wheat using cadmium (Cd) as a background contaminant. The results demonstrated that Cd significantly impeded the normal growth of wheat by disrupting root development. Both PS and SPS exhibited hormesis at low concentrations and promoted wheat growth. Under combined toxicity, PS reduced oxidative stress and promoted the uptake of essential metal elements in wheat. Additionally, KEGG pathway analysis revealed that PS facilitated the repair of Cd-induced blockage of the TCA cycle and glutathione metabolism. However, high concentrations of SPS in combined toxicity not only enhanced oxidative stress and interfered with the uptake of essential metal elements, but also exacerbated the blocked TCA cycle and interfered with pyrimidine metabolism. These differences are related to the different stability (Zeta potential, Hydrodynamic particle size) of the two microplastics in the aquatic environment and their ability to carry heavy metal ions, especially Cd. The results of this study provide important insights into understanding the effects of microplastics on crops in the context of Cd contamination and their environmental and food safety implications.


Asunto(s)
Cadmio , Estrés Oxidativo , Poliestirenos , Triticum , Poliestirenos/toxicidad , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Cadmio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Microplásticos/toxicidad , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Contaminantes Químicos del Agua/toxicidad , Contaminantes del Suelo/toxicidad
4.
Sci Total Environ ; 945: 174023, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38885711

RESUMEN

Microplastics in food and drinking water can enter the human body through oral exposure, posing potential health risks to the human health. Most studies on the toxic effects of microplastics have focused on aquatic organisms, but the effects of the human digestive environment on the physicochemical properties of microplastics and their potential toxicity during gastrointestinal digestion are often limited. In this study, we first studied the influence of interactions between digestive tract protein (α-amylase, pepsin, and trypsin) and microplastics on the activity and conformation of digestive enzymes, and the physicochemical properties of polyvinyl chloride microplastics (PVC-MPs). Subsequently, a simulated digestion assay was performed to determine the biotransformation of PVC-MPs in the digestive tract and the intestinal toxicity of PVC-MPs. The in vitro experiments showed that the protein structure and activity of digestive enzymes were changed after adsorption by microplastics. After digestion, the static contact angle of PVC-MPs was decreased, indicating that the hydrophilicity of the PVC-MPs increased, which will increase its mobility in organisms. Cell experiment showed that the altered physicochemical property of PVC-MPs after digestion process also affect its cytotoxicity, including cellular uptake, cell viability, cell membrane integrity, reactive oxygen species levels, and mitochondrial membrane potential. Transcriptome analyses further confirmed the enhanced biotoxic effect of PVC-MPs after digestion treatment. Therefore, the ecological risk of microplastics may be underestimated owing to the interactions of microplastics and digestive tract protein during biological ingestion.


Asunto(s)
Tracto Gastrointestinal , Microplásticos , Cloruro de Polivinilo , Contaminantes Químicos del Agua , Cloruro de Polivinilo/toxicidad , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Humanos , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/metabolismo
5.
Chemosphere ; 286(Pt 2): 131756, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34365174

RESUMEN

MnO2 nanorods with controllable scale were grown in the PVDF-g-PMAA modified membrane to form PVDF-g-PMAA@ MnO2 membrane through the in situ redox reaction of KMnO4 solution, which is confirmed by scanning electron microscopy (SEM) and X-ray energy-dispersion spectroscopy (EDX). The pore size of the membrane decreased with the increase of KMnO4 solution concentration. The thermodynamic stability and the hydrophilicity of the membrane were also enhanced by the MnO2 nanorods. The water flux, bovine serum albumin (BSA)/Lysozyme protein solution flux and rejection, flux recovery, etc. showed effective improvement of the anti-fouling performance of the PVDF-g-PMAA@ MnO2 membrane. More importantly, it can effectively separate BSA from lysozyme, which provided a potential application in the field of biology, food, and other industrial fields for the requirement of separation and purification.


Asunto(s)
Incrustaciones Biológicas , Nanotubos , Incrustaciones Biológicas/prevención & control , Compuestos de Manganeso , Membranas Artificiales , Óxidos , Ácidos Polimetacrílicos , Polivinilos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA