Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Soft Matter ; 16(7): 1792-1800, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-31970380

RESUMEN

We have investigated the synergism between plant phenols and carotenoids in protecting the phosphatidylcholine (PC) membranes of giant unilamellar vesicles (GUVs) from oxidative destruction, for which chlorophyll-a (Chl-a) was used as a lipophilic photosensitizer. The effect was examined for seven different combinations of ß-carotene (ß-CAR) and plant phenols. The light-induced change in GUV morphology was monitored via conventional optical microscopy, and quantified by a dimensionless image-entropy parameter, ΔE. The ΔE-t time evolution profiles exhibiting successive lag phase, budding phase and ending phase could be accounted for by a Boltzmann model function. The length of the lag phase (LP in s) for the combination of syringic acid and ß-CAR was more than seven fold longer than for ß-CAR alone, and those for other different combinations followed the order: salicylic acid < vanillic acid < syringic acid > rutin > caffeic acid > quercetin > catechin, indicating that moderately reducing phenols appeared to be the most efficient membrane co-stabilizers. The same order held for the residual contents of ß-CAR in membranes after light-induced oxidative degradation as determined by resonance Raman spectroscopy. The dependence of LP on the reducing power of phenols coincided with the Marcus theory plot for the rate of electron transfer from phenols to the radical cation ß-CAR˙+ as a primary oxidative product, suggesting that the plant phenol regeneration of ß-CAR plays an important role in stabilizing the GUV membranes, as further supported by the involvement of CAR˙+ and the distinct shortening of its lifetime as shown by transient absorption spectroscopy.


Asunto(s)
Antioxidantes/farmacología , Membrana Dobles de Lípidos/química , Membranas/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Antioxidantes/química , Carotenoides/farmacología , Membrana Dobles de Lípidos/antagonistas & inhibidores , Membranas/química , Oxidación-Reducción/efectos de los fármacos , Fenoles/farmacología , Liposomas Unilamelares/química
2.
Anal Chem ; 90(3): 2126-2133, 2018 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-29298041

RESUMEN

We have attempted to evaluate, on the basis of optical microscopy for a single giant unilamellar vesicle (GUV), the potency of antioxidants in protecting GUV membranes from oxidative destruction. Photosensitized membrane budding of GUVs prepared from soybean phosphatidylcholine with chlorophyll a (Chl a) and ß-carotene (ß-Car) as photosensitizer and protector, respectively, were followed by microscopic imaging. A dimensionless entropy parameter, ΔE, as derived from the time-resolved microscopic images, was employed to describe the evolution of morphological variation of GUVs. As an indication of membrane instability, the budding process showed three successive temporal regimes as a common feature: a lag phase prior to the initiation of budding characterized by LP (in s), a budding phase when ΔE increased with a rate of kΔE (in s-1), and an ending phase with morphology stabilized at a constant ΔEend (dimensionless). We show that the phase-associated parameters can be objectively obtained by fitting the ΔE-t kinetics curves to a Boltzmann function and that all of the parameters are rather sensitive to ß-Car concentration. As for the efficacy of these parameters in quantifying the protection potency of ß-Car, kΔE is shown to be most sensitive for ß-Car in a concentration regime of biological significance of <1 × 10-7 M, whereas LP and ΔEend are more sensitive for ß-Car concentrations exceeding 1 × 10-7 M. Furthermore, based on the results of GUV imaging and fluorescence and Raman spectroscopies, we have revealed for different phases the mechanistic interplay among 1O2* diffusion, PC-OOH accumulation, Chl a and/or ß-Car consumption, and the morphological variation. The developed assay should be valuable for characterizing the potency of antioxidants or prooxidants in the protection or destruction of the membrane integrity of GUVs.


Asunto(s)
Antioxidantes/química , Clorofila A/química , Fármacos Fotosensibilizantes/química , Liposomas Unilamelares/química , beta Caroteno/química , Clorofila A/efectos de la radiación , Difusión , Luz , Estrés Oxidativo/efectos de la radiación , Fosfatidilcolinas/química , Fármacos Fotosensibilizantes/efectos de la radiación , Oxígeno Singlete/química , Glycine max/química , Liposomas Unilamelares/efectos de la radiación
3.
Photochem Photobiol Sci ; 16(5): 795-807, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28374036

RESUMEN

Low molecular weight (MW) polyols are organic osmolytes influencing protein structure and activity. We have intended to investigate the effects of low MW polyols on the optical and the excited-state properties of the light-harvesting complex 2 (LH2) isolated from the photosynthetic bacterium Thermochromatium (Tch.) tepidum, a thermophile growing at ∼50 °C. Steady state spectroscopy demonstrated that, on increasing glycerol or sorbitol fractions up to 60% (polyol/water, v/v), the visible absorption of carotenoids (Crts) remained unchanged, while the near infrared Qy absorption of bacteriochlorophyll a (BChl) at 800 nm (B800) and 850 nm (B850) varied slightly. Further increasing the fraction of glycerol (but not sorbitol) to 80% (v/v) induced distinct changes of the near infrared absorption and fluorescence spectra. Transient absorption spectroscopy revealed that, following the fast processes of BChl-to-Crt triplet energy transfer, rather weak Qy signals of B800 and B850 remained and evolved in phase with the kinetics of triplet excited state Crt (3Crt*), which are attributed to the Qy band shift as a result of 3Crt*-BChl interaction. The steady state and the transient spectral responses of the Qy bands are found to correlate intimately with the water activity varying against polyol MW and mixing ratio, which are rationalized by the change of the hydration status of the C- and N-termini of LH2. Our results suggest that, with reference to the mesophilic purple bacterium Rhodobacter sphaeroides 2.4.1, Tch. tepidum adopts substantially more robust LH2 hydration against the osmotic effects from the low MW polyols.


Asunto(s)
Chromatiaceae/química , Complejos de Proteína Captadores de Luz/química , Polímeros/química , Chromatiaceae/metabolismo , Complejos de Proteína Captadores de Luz/aislamiento & purificación , Complejos de Proteína Captadores de Luz/metabolismo , Polímeros/metabolismo , Solventes/química , Solventes/metabolismo , Espectrometría de Fluorescencia , Espectrometría Raman , Agua/química , Agua/metabolismo
4.
Molecules ; 22(9)2017 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-28841145

RESUMEN

Excited state dynamics of two-dimensional-like conjugated copolymers PFDCN and PFSDCN based on alternating fluorene and triphenylamine main chains and malononitrile pendant acceptor groups with thiophene as π-bridge, have been investigated by using transient absorption spectroscopy. There is an additional conjugated -C=C- bond in PFDCN, which distinguishes it from PFSDCN. The lowest energy absorption band of each copolymer absorption spectrum is attributed to the π-π* transition with intramolecular charge-transfer, which has a lower fluorescence contribution than those of higher energy absorption bands. The optical excitation of either PFDCN or PFSDCN solution generates polaron pairs that then self-localize and evolve to a bound singlet exciton within a few picoseconds. Due to the additional conjugated -C=C- bond in the acceptor side-chain, PFDCN has a stronger intramolecular charge-transfer characteristic compared with PFSDCN, therefore exhibiting a longer self-localization time (7 ps vs. 3 ps for PFSDCN) and a shorter fluorescence lifetime (1.48 ns vs. 1.60 ns for PFSDCN).


Asunto(s)
Compuestos de Anilina/química , Fluorenos/química , Nitrilos/química , Polímeros/química , Fluorescencia , Cinética , Estructura Molecular , Solventes/química , Espectrometría de Fluorescencia/métodos , Relación Estructura-Actividad
5.
Chemosphere ; 326: 138341, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36925008

RESUMEN

The environmental and ecological consequences of nanoplastics (NPs) draw increasing research interests and social concerns. However, the in situ and real-time detection of NPs from living organisms and transferring media remains as a major technical obstacle for scientific investigation. Herein we report a novel time-gated imaging (TGI) strategy capable of real-time visualizing the intake of NPs by an individual living organism, which is based on the polystyrene NPs labelled with lanthanide up-conversion luminescence. The limit of detection (LOD) of the TGI apparatus was 600 pg (SNR = 3) in a field of view of 2.4 × 3.8 mm. Taking Daphnia magna as the aquatic model, we investigated the dynamics of uptake and accumulation of NPs (500 µg/L) for 24 h, and the subsequent excretion process (in clean medium) for 48 h, and quantitively analyzed the distribution and the overall mass of NPs deposited in D. magna. The uptake of NPs via filter-feeding occurred in a few minutes, whereas a longer accumulation was found, in a timescale of several hours. And similar behaviors (bi-phase elimination) were also seen in the excretion, indicating the migration of NPs into the circulatory system. The average mass of NPs accumulated in an individual D. magna was ∼12 ng after 24 h exposure, indicating that D. magna as a filter feeder tends to retain NPs. The observed NPs accumulation in D. magna exemplifies the potential risk of aquatic ecosystem on exposure to NP contamination.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Daphnia , Poliestirenos , Ecosistema , Luminiscencia , Imagen Óptica , Contaminantes Químicos del Agua/toxicidad
6.
Molecules ; 17(12): 13923-36, 2012 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-23178308

RESUMEN

Ultrafast near-infrared absorption spectroscopy was used to investigate the influence of film morphology and excitation photon energy on the charge recombination (CR) dynamics in the initial nanosecond timescale in the P3HT/PC(61)BM blend films. With reference to the CS(2)-cast films, the solvent vapor annealed (SVA) ones show 2­3-fold improvement in hole mobility and more than 5-fold reduction in the polymer-localized trap states of holes. At Dt = 70 ps, the hole mobility (m(h)) and the bimolecular CR rate (γ(bi)) of the SVA films are µ(h) = 8.7 × 10(−4) cm2 × s(−1) × V(−1) and γ(bi) = 4.5 × 10(−10) cm3 × s(−1), whereas at Δt = 1 ns they drop to 8.7 × 10(−5) cm2 × s(−1) × V(−1) and 4.6 × 10(−11) cm3 × s(−1), respectively. In addition, upon increasing the hole concentration, the hole mobility increases substantially faster under the above-gap photoexcitation than it does under the band-gap photoexcitation, irrespective of the film morphologies. The results point to the importance of utilizing the photogenerated free charges in the early timescales.


Asunto(s)
Fulerenos/química , Compuestos de Organoselenio/química , Absorciometría de Fotón , Estructura Molecular , Polímeros/química , Semiconductores , Energía Solar , Solventes/química
7.
Biophys Chem ; 285: 106807, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35349930

RESUMEN

The present work is intended to investigate the morphological instability of lipid membrane induced by peroxyl radical (ROO•) and the underlying mechanism. To this end, the giant unilamellar vesicle (GUV) made from phosphatidylcholine was employed as a membrane model, and the azo compounds 2,2'-azobis(2,4-dimethylvaleronitrile) (AMVN) and 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH) were used as the precursors of ROO•. Upon mild pyrolysis, the GUV immobilized in agarose gel was followed by conventional optical microscopy in real time, and the morphological variation was quantified by the image heterogeneity, perimeter and area all as a function of time for up to an hour. Lipid oxidation initiated from lipid phase with AMVN and from aqueous phase with AAPH led to different types of morphological changes, i.e. membrane coarsening and vesicle deformation/budding, respectively. Based on the compositional analysis of lipid oxidation products, we propose that ROO• as the primary radical initiator is responsible for the morphological changes of the GUV-AMVN while both ROO• and RO• are responsible for the morphological changes of the GUV-AAPH system. Lipophilic ß-carotene and amphipathic plant phenols as antioxidants are found to be able to stabilize the membrane integrity effectively, in corroboration with the proposed mechanisms for membrane destruction.


Asunto(s)
Amidinas , Liposomas Unilamelares , Amidinas/farmacología , Nitrilos/farmacología , Oxidación-Reducción , Peróxidos , Fosfatidilcolinas/química
8.
Biophys Chem ; 275: 106624, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34051444

RESUMEN

Singlet oxygen (1O2) formed through photosensitization may initiate oxidative destruction of biomembranes, however, the influence from the spatial organization of photosensitizers (PS) relative to membranes remains unclear. To clarify this issue, we loaded riboflavin 5'-(dihydrogen phosphate) monosodium (FMN-Na) as a hydrophilic PS into the lumen of halloysite nanotubes (HNTs), and attached the nanoassemblies (FMN-Na@HNTs), via Pickering effects, to the outer surfaces of giant unilamellar vesicles (GUVs) of phospholipids. We also prepared GUVs dopped with lumiflavin (LF) as a lipophilic PS having a 1O2 quantum yield comparable to FMN-Na. FMN-Na capsulated in HNT was characterized by a longer triplet excited state lifetime (12.1 µs) compared to FMN-Na free in solution (7.5 µs), and FMN-Na in both forms efficiently generated 1O2 upon illumination. The spatio-effects of PS on the photosensitized morphological changes of membranes were studied using conventional optical microscopy by monitoring GUV morphological changes. Upon light exposure (400-440 nm), the GUVs attached with FMN-Na@HNT merely experienced membrane deformation starting from the original spherical shape, ascribed to Type II photosensitization with 1O2 as oxidant. In contrast, photooxidation of LF dopped GUVs mainly led to membrane coarsening and budding assigned to Type I photosensitization. The spatial effects of PS on photosensitized morphological changes were related to the different lipid oxidation products generated through Type I and Type II photosensitized lipid oxidation.


Asunto(s)
Liposomas Unilamelares , Oxidación-Reducción , Fármacos Fotosensibilizantes , Oxígeno Singlete
9.
Biomaterials ; 190-191: 86-96, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30408640

RESUMEN

Phototherapy has drawn increasing attention including the use of nanocarriers with high drug loading capacity and delivery efficacy for target-specific therapy. We have made use of naturally-occurring halloysite nanotubes (HNTs) to build a biomimetic nanocarrier platform for target-specific delivery of phototherapeutic agents. The HNTs were decorated with poly(sodium-p-styrenesulfonate) (PSS) to enhance the biocompatibility, and were further functionalized by lumen loading the type-II photosensitizer indocyanine green (ICG). The HNT-PSS-ICG nanocarrier, without further tethering targeting groups, was shown to associate with the membrane of giant unilamellar vesicles (GUVs) via Pickering effects. Application of HNT-PSS-ICG nanocarrier to human breast cancer cells gave rise to a cell mortality as high as 95%. The HNT-PSS-ICG nanocarrier was further coated with MDA-MB-436 cell membranes to endow it with targeting therapy performance against breast cancer, which was confirmed by in vivo experiments using breast cancer tumors in mice. The membrane-coated and biocompatible nanocarrier preferentially concentrated in the tumor tissue, and efficiently decreased the tumor volume by a combination of photodynamic and photothermal effects upon near-infrared light exposure. Our results demonstrate that the HNT-based nanocarrier by virtue of facial preparation and high loading capacity can be a promising candidate for membrane-targeting nanocarriers.


Asunto(s)
Neoplasias de la Mama/tratamiento farmacológico , Portadores de Fármacos/química , Verde de Indocianina/administración & dosificación , Nanotubos/química , Fármacos Fotosensibilizantes/administración & dosificación , Animales , Materiales Biocompatibles/química , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Verde de Indocianina/uso terapéutico , Ratones Desnudos , Nanotubos/ultraestructura , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Polímeros/química , Ácidos Sulfónicos/química
10.
ChemSusChem ; 9(13): 1623-33, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27226175

RESUMEN

The excited-state properties and chain conformations of a new low-bandgap copolymer based on benzo[1,2-b:4,5-b']dithiophene (BDT) and thieno[3,4-b]thiophene with meta-alkoxyphenyl-substituted side chains in solution were investigated comprehensively. Time-resolved spectroscopy suggested that the excited-state properties were sensitive to the conformations of the copolymer in solution. In addition, excited-state dynamics analyses revealed the photogeneration of triplet excited states by intersystem crossing (ISC) at a rate constant of ∼0.4×10(9)  s(-1) as a result of direct meta-alkoxyphenyl connection to the donor unit BDT irrespective to the macromolecular conformations. According to El-Sayed's rule, the fast ISC herein is correlated with the change of orbital types between singlet and triplet excited states as also shown by quantum chemical calculations. Our studies may shed light on the structure-property relationships of photovoltaic materials.


Asunto(s)
Suministros de Energía Eléctrica , Polímeros/química , Energía Solar , Solventes/química , Cinética , Conformación Molecular , Procesos Fotoquímicos , Tiofenos/química , Tolueno/química
11.
Biomaterials ; 100: 152-61, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27258485

RESUMEN

Great challenges remain in the noninvasive luminescence imaging analysis of tumor-targeting dynamics of nanocarriers in living animals which is of significance for the development of anti-cancer nanomedicine. In this work, luminescent nanoparticles Eu(tta)3bpt@SMA (dav = 15 nm), which exhibited good water dispersion stability and high yields of red Eu-luminescence under near-infrared two-photon excitation, were prepared by a modified microfluidic mixing method in the absence of surfactants. Tumor-targeting agents, Arg-Gly-Asp-D-Phe-Lys (cRGD) polypeptide or transferrin (Tf), were then anchored on the nanoparticle surfaces to form the desired nanocarriers Eu@SMA-RGD or Eu@SMA-Tf. The tumor-targeting processes of the prepared nanocarriers in intact living mice were analyzed on a home-built two-photon excitation time-resolved (TPE-TR) imaging apparatus having a wide view filed. The TPE-TR strategy could effectively suppress the interference from biological autofluorescence, which allowed the targeted domains to be visualized with a high signal-to-noise ratio. It was found that the tumor-tissue trapping efficacy of Eu@SMA-RGD was much higher than that of Eu@SMA-Tf, and the desorption process from the tumor tissues of Eu@SMA-RGD was slower than that of Eu@SMA-Tf. The methods developed in this work pave a way to investigate the in vivo tumor-targeting dynamics of nanocarriers by noninvasive luminescence imaging of living animals.


Asunto(s)
Europio/química , Neoplasias Hepáticas/diagnóstico por imagen , Sustancias Luminiscentes/química , Mediciones Luminiscentes/métodos , Maleatos/química , Nanopartículas/química , Imagen Óptica/métodos , Poliestirenos/química , Animales , Células Hep G2 , Humanos , Ratones Desnudos , Nanopartículas/ultraestructura , Péptidos Cíclicos/química , Fotones , Transferrina/química
12.
J Agric Food Chem ; 63(41): 9124-30, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26429551

RESUMEN

Incorporation of astaxanthin or zeaxanthin in giant unilamellar vesicles (GUVs) of phosphatidylcholine resulted in a longer lag phase than incorporation of ß-carotene or lycopene for the onset of budding induced by chlorophyll a photosensitization and quantified by a dimensionless entropy parameter using optical microscopy and digital image heterogeneity analysis. The lowest initial rate of GUV budding after the lag phase was seen for GUVs with astaxanthin as the least reducing carotenoid, while the lowest final level of entropy appeared for those with lycopene or ß-carotene as a more reducing carotenoid. The combination of astaxanthin and lycopene gave optimal protection against budding with respect to both a longer lag phase and lower final level of entropy by combining good electron acceptance and good electron donation. Quenching of singlet oxygen by carotenoids close to chlorophyll a in the membrane interior in parallel with scavenging of superoxide radicals by astaxanthin anchored in the surface may explain the synergism between carotenoids involving both type I and type II photosensitization by chlorophyll a.


Asunto(s)
Carotenoides/química , Liposomas Unilamelares/efectos de la radiación , Zeaxantinas/química , Cinética , Luz , Oxidación-Reducción/efectos de la radiación , Liposomas Unilamelares/química
13.
Food Funct ; 5(7): 1573-8, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24867711

RESUMEN

Giant unilamellar vesicles of soy phosphatidylcholine are found to undergo budding when sensitized with chlorophyll a ([phosphatidylcholine] : [chlorophyll a] = 1500 : 1) under light irradiation (400-440 nm, 16 mW mm(-2)). 'Entropy' as a dimensionless image heterogeneity measurement is found to increase linearly with time during an initial budding process. For ß-carotene addition ([phosphatidylcholine] : [ß-carotene] = 500 : 1), a lag phase of 23 s is observed, followed by a budding process at an initial rate lowered by a factor of 3.8, whereas resveratrol ([phosphatidylcholine] : [resveratrol] = 500 : 1) has little if any protective effect against budding. However, resveratrol, when combined with ß-carotene, is found to further reduce the initial budding rate by a total factor of 4.7, exhibiting synergistic antioxidation effects. It is also interesting that ß-carotene alone determines the lag phase for the initiation of budding, while resveratrol supports ß-carotene in reducing the rate of the budding process following the lag phase; however, it alone has no observable effect on the lag phase. Resveratrol is suggested to regenerate ß-carotene following its sacrificial protection of unsaturated lipids from oxidative stress, modeling the synergistic effects in cell membranes by combinations of dietary antioxidants.


Asunto(s)
Antioxidantes/química , Estilbenos/química , Liposomas Unilamelares/química , beta Caroteno/química , Procesamiento de Imagen Asistido por Computador , Microscopía Fluorescente , Estrés Oxidativo , Fosfatidilcolinas/química , Resveratrol , Glycine max/química
14.
J Food Sci ; 79(9): C1688-94, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25103027

RESUMEN

ß-Carotene is found to be more effective as an antioxidant in phosphatidylcholine (PC) liposomes when protecting against hydrophilic radicals compared to lipophilic radicals, as measured by the rate of formation of conjugated dienes. Daidzein alone is without effect, but decreases the antioxidative effect of ß-carotene for hydrophilic initiation and increases the effect for lipophilic initiation. The newly synthesized 7-cholesterylglycol daidzein has the opposite effect for ß-carotene as antioxidant, with a strong enhancement for hydrophilic initiation and a slight decrease for lipophilic initiation. Redistributing ß-carotene to membrane surfaces by cholesterol-anchoring of daidzein enhances protection against aqueous radicals significantly at the expense of protection against lipid-derived radicals. Anchoring of daidzein to cholesterol is concluded to be useful as a mechanistic tool for controlling antioxidant distribution in membranes sensitive to radical damage, as supported by quantum mechanical calculation within the density function theory and further supported by fluorescence probes and fluorescence polarization probes.


Asunto(s)
Antioxidantes/análisis , Colesterol/análogos & derivados , Isoflavonas/química , beta Caroteno/análisis , Antioxidantes/química , Colesterol/química , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/química , Fosfatidilcolinas/química , beta Caroteno/química
15.
Arch Pharm Res ; 35(1): 109-17, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22297749

RESUMEN

The aim of this study was to compare the skin permeation of ethosomes, binary ethosomes and transfersomes of Terbinafine Hydrochloride (TH) under non-occlusive conditions. These lipid vesicles were prepared and characterized for shape, size, zeta-potential and entrapment efficiency. Franz diffusion cells and confocal laser scanning microscopy (CLSM) were used for the percutaneous absorption studies. The quantity of drug in the skin from ethosomes, binary ethosomes (the weight ratio of ethanol to propylene glycol 7:3, ethanol-PG = 7:3, w/w), and transfersomes was 1.26, 1.51 (p <0.05), 1.56 (p <0.01) times higher than that of TH from traditional liposomes (control). The skin deposition of the applied dose (DD%) of TH from ethosomes, binary ethosomes, and transfersomes was 3.34 (p < 0.05), 9.88 (p < 0.01), 2.52 times higher than that of TH from control. The results of CLSM experiments showed that penetration depth and fluorescence intensity of Rhodamine B from binary ethosomes was much greater than that from ethosomes and transfersomes. These results indicated the binary ethosomes (ethanol-PG = 7:3, w/w) most effectively permitted drug penetration through skin; transfersomes made drug easiest to accumulate in the skin. Ethosomes improved drug delivery with greater improvement in skin permeation than improvement in skin deposition.


Asunto(s)
Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/farmacocinética , Liposomas/administración & dosificación , Liposomas/farmacocinética , Naftalenos/administración & dosificación , Naftalenos/farmacocinética , Administración Cutánea , Animales , Masculino , Ratones , Rodaminas/administración & dosificación , Rodaminas/farmacocinética , Absorción Cutánea , Terbinafina
16.
J Agric Food Chem ; 60(41): 10331-6, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-23016668

RESUMEN

Giant unilamellar vesicles (GUVs of diameter 5-25 µm) of soy phosphatidylcholine (PC), resistant to intense light exposure (400-440 nm, ~15 mW·mm(-2)), underwent budding when containing chlorophyll a (Chla) in the lipid bilayer ([PC]:[Chla] = 1500:1). On the basis of image heterogeneity analysis using inverted microscopy, a dimensionless entropy parameter for the budding process was shown to increase linearly during an initial budding process. Lipophilic ß-carotene (ß-Car, [PC]:[ß-Car] = 500:1) reduced the initial budding rate by a factor of 2.4, while the hydrophilic glycoside rutin ([PC]:[rutin] = 500:1) had no effect. Chla photosensitized oxidation of PC to form linoleoyl hydroperoxides, further leading to domains of higher polarity in the vesicles, is suggested to trigger budding. The average dipole moment (µ) of linoleic acid hydroperoxides was calculated using density functional theory (DFT) to have the value of 2.84 D, while unoxidized linoleic acid has µ = 1.86 D. ß-Carotene as a lipophilic antioxidant and singlet-oxygen quencher seems to hamper oxidation in the lipid bilayers and delay budding in contrast to rutin located in the aqueous phase. The effect on budding of GUVs as a detrimental process for membranes is suggested for use in assays for evaluation of potential protectors of cellular integrity and functions under oxidative stress.


Asunto(s)
Antioxidantes/farmacología , Membrana Dobles de Lípidos/química , Estrés Oxidativo/fisiología , Fenómenos Químicos , Clorofila/análisis , Clorofila A , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/química , Oxidación-Reducción , Fosfatidilcolinas/química , Fotoquímica , Rutina/farmacología , Oxígeno Singlete/química , Termodinámica , beta Caroteno/farmacología
17.
J Agric Food Chem ; 59(23): 12643-51, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22023371

RESUMEN

Green tea polyphenols, (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), and (-)-epigallocatechin gallate (EGCG), all showed antioxidative effect in liposomes for lipid oxidation initiated in the lipid phase (antioxidant efficiency EC > EGCG > ECG > EGC) or in the aqueous phase (EC ≫ EGC > EGCG > ECG) as monitored by the formation of conjugated dienes. For initiation in the lipid phase, ß-carotene, itself active as an antioxidant, showed antagonism with the polyphenols (EC > ECG > EGCG > EGC). The Trolox equivalent antioxidant capacity (TEAC EGC > EGCG > ECG > EC) correlates with the lowest phenol O-H bond dissociation enthalpy (BDE) as calculated by density functional theory (DFT). Surface-enhanced Raman spectroscopy (SERS) was used to assess the reducing power of the phenolic hydroxyls in corroboration with DFT calculations. For homogeneous (1:9 v/v methanol/chloroform) solution, the ß-carotene radical cation reacted readily with each of the polyphenol monoanions (but not with the neutral polyphenols) with a rate approaching the diffusion limit for EC as studied by laser flash photolysis at 25 °C monitoring the radical cation at 950 nm. The rate constant did not correlate with polyphenol HOMO/LUMO energy gap (DFT calculations), and ß-carotene was not regenerated by an electron transfer reaction (monitored at 500 nm). It is suggested that the ß-carotene radical cation is rather reacting with the tea polyphenols through addition, as further evidenced by steady-state absorption spectroscopy and liquid chromatography-mass spectroscopy (LC-MS), in effect preventing regeneration of ß-carotene as an active lipid phase antioxidant and leading to the observed antagonism.


Asunto(s)
Antioxidantes , Peroxidación de Lípido/efectos de los fármacos , Liposomas/química , Polifenoles/antagonistas & inhibidores , Té/química , beta Caroteno/química , Cationes , Radicales Libres/química , Radicales Libres/farmacología , Polifenoles/química , beta Caroteno/farmacología
18.
J Agric Food Chem ; 59(23): 12652-7, 2011 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-22007884

RESUMEN

Daidzein, an isoflavonoid with known prooxidative effects in heterogeneous lipid/water systems, changes to an antioxidant for 7-n-alkoxy derivatives of daidzein. For an alkyl length increasing from 4 to 8, 12, and 16 carbons, the oxidation potential decreases gradually from 1.09 V (vs NHE) for daidzein (D) to 0.94 V for D16 in tetrahydrofuran as determined by cyclic voltammetry at 25 °C. The prooxidative effects transform into antioxidative effects from D8 with a maximal effect for D12 for aqueous phase initiation of lipid oxidation in liposomes despite a gradual decrease in Trolox equivalent antioxidant capacity (TEAC) with increasing alkyl chain length. Quantum mechanical calculations using density functional theory (DFT) showed that the bond dissociation energy of the O-H bond of the 4'-phenol is constant along the homologue series in contrast to Δµ, the change in dipole moment upon hydrogen atom donation, which increases for increasing chain length. The frontier orbital energy gap goes through a maximum for D12. The change in the A-to-B dihedral angle upon hydrogen atom donation further shows a maximum for D12 of 6.45°. The importance of these microscopic properties for antioxidative activity was confirmed by a change in liposome fluorescence anisotropy using a fluorescent probe showing maximal penetration into the lipid bilayer for D12 along the homologue series.


Asunto(s)
Antioxidantes/química , Isoflavonas/química , Antioxidantes/síntesis química , Peroxidación de Lípido , Liposomas/química , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Oxidantes/química , Relación Estructura-Actividad Cuantitativa , Termodinámica
19.
J Agric Food Chem ; 58(16): 9221-7, 2010 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-20672803

RESUMEN

Antioxidant synergism (or antagonism) between plant (iso)flavonoids (daidzein, baicalein, and quercetin) or their glycosides (puerarin, baicalin, and rutin) and ß-carotene in phosphatidylcholine liposomes (pH 7.4) with oxidation initiated thermally by the lipophilic free radical initiator 2,2'-azobis(2,4-dimethylvaleronitrile) (AMVN) and followed by the formation of conjugated dienes did not depend simply on the bond dissociation enthalpy (BDE) of the phenol O-H bond or the HOMO/LUMO energy gap based on density functional theory (DFT) calculations. Rate of regeneration of ß-carotene from the ß-carotene radical cation as the one-electron oxidation product of the lipid phase antioxidant by the monoanion form of the (iso)flavonoids in homogeneous (1:9 v/v methanol/chloroform) solution, as studied by laser flash photolysis and occurring on a microsecond time scale with biphasic kinetics, was in better agreement with the observed nonadditive antioxidative effects. However, correcting the observed (pseudo)-first-order rate constant for ß-carotene regeneration for water/lipid distribution of the (iso)flavonoids provided an almost correct ordering of the (iso)flavonoids, according to the nonadditive effects with ß-carotene on lipid oxidation.


Asunto(s)
Antioxidantes/farmacología , Flavonoides/farmacología , Glicósidos/farmacología , Liposomas , Termodinámica , beta Caroteno/farmacología , Cinética , Oxidación-Reducción
20.
J Agric Food Chem ; 57(9): 3780-5, 2009 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-19296660

RESUMEN

The isoflavonoid genistein was found to be a better antioxidant than the isomeric flavonoid apigenin in phosphatidyl liposomes at pH 7.4. The higher antioxidation activity of genistein compared with apigenin is in agreement with its lower oxidation potential (0.73 vs 0.86 V as determined by cyclic voltammetry in aqueous solution of pH= 7.4), lower dissociation enthalpy (87.03 vs 87.88 kcal mol(-1) as calculated for the more reducing 4'-hydroxyl group), and higher radical scavenging capacity in the TEAC assay. On the basis of quantum mechanical calculations for genistein and apigenin in comparison with the flavonoid naringenin and the isoflavonoids puerarin, daidzein, and equol, a lower dipole moment and a larger deviation for the A-to-B dihedral angle from coplanarity (39.3 degrees for genistein, 18.5 degrees for apigenin) are suggested to be important for the increased antioxidant efficiency at water/lipid interfaces among (iso) flavonoids with an equal number of phenolic groups.


Asunto(s)
Antioxidantes/química , Apigenina/química , Genisteína/química , Fenómenos Químicos , Electroquímica , Concentración de Iones de Hidrógeno , Liposomas/química , Oxidación-Reducción , Soluciones , Relación Estructura-Actividad , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA