Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Water Sci Technol ; 70(5): 851-7, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25225932

RESUMEN

Graphene oxide (GO) was chemically modified with poly(ethylene imine) (PEI) to improve its colloidal stability and was investigated as a potential adsorbent for the removal of methyl orange (MO). The synthesis of PEI-GO was verified with a Fourier transform infrared spectrometer and thermogravimetric analysis. A series of adsorption experiments were carried out to investigate the adsorption capacity of PEI-GO. Adsorption kinetics and thermodynamics studies were performed, and the thermodynamic parameters were calculated. The results showed that PEI could improve the colloidal stability of GO in aqueous solution, and the obtained PEI-GO showed a macroscopically homogeneous dispersion after more than three months. After standing for 90 days, the Brunauer-Emmett-Teller specific surface area of GO decreased from 353 to 214 m2·g(-1), while that of PEI-GO remained almost unchanged (from 432 to 413 m2·g(-1)). The PEI-GO exhibited significantly faster kinetic and higher adsorption capacity for MO than GO. Moreover, PEI-GO had a good adsorption capacity in the acidic range, and the highest adsorption of MO occurred at pH=6.0. The adsorption of MO on PEI-GO was an endothermic, spontaneous and physisorption process.


Asunto(s)
Compuestos Azo/aislamiento & purificación , Grafito/química , Iminas/química , Óxidos/química , Polietilenos/química , Contaminantes Químicos del Agua/aislamiento & purificación , Adsorción , Coloides , Cinética , Espectroscopía Infrarroja por Transformada de Fourier , Termodinámica
2.
Food Chem Toxicol ; 190: 114787, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38838754

RESUMEN

Lignin-derivable bisguaiacols/bissyringols are viable alternatives to commercial bisphenols; however, many bisguaiacols/bissyringols (e.g., bisguaiacol F [BGF]) have unsubstituted bridging carbons between the aromatic rings, making them more structurally similar to bisphenol F (BPF) than bisphenol A (BPA) - both of which are suspected endocrine disruptors. Herein, we investigated the estrogenic activity (EA) and developmental toxicity of dimethyl-substituted bridging carbon-based lignin-derivable bisphenols (bisguaiacol A [BGA] and bissyringol A [BSA]). Notably, BSA showed undetectable EA at seven test concentrations (from 10-12 M to 10-6 M) in the MCF-7 cell proliferation assay, whereas BPA had detectable EA at five concentrations (from 10-10 M to 10-6 M). In silico results indicated that BSA had the lowest binding affinity with estrogen receptors. Moreover, in vivo chicken embryonic assay results revealed that lignin-derivable monomers had minimal developmental toxicity vs. BPA at environmentally relevant test concentrations (8.7-116 µg/kg). Additionally, all lignin-derivable compounds showed significantly lower expression fold changes (from ∼1.81 to ∼4.41) in chicken fetal liver tests for an estrogen-response gene (apolipoprotein II) in comparison to BPA (fold change of ∼11.51), which was indicative of significantly reduced estrogenic response. Altogether, the methoxy substituents on lignin-derivable bisphenols appeared to be a positive factor in reducing the EA of BPA alternatives.


Asunto(s)
Compuestos de Bencidrilo , Estrógenos , Lignina , Fenoles , Animales , Fenoles/toxicidad , Fenoles/química , Humanos , Compuestos de Bencidrilo/toxicidad , Compuestos de Bencidrilo/química , Lignina/química , Embrión de Pollo , Estrógenos/toxicidad , Estrógenos/química , Células MCF-7 , Disruptores Endocrinos/toxicidad , Disruptores Endocrinos/química , Proliferación Celular/efectos de los fármacos , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/efectos de los fármacos , Pollos
3.
Food Chem ; 424: 136444, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37257281

RESUMEN

Resveratrol loaded nanoparticles (nano-resveratrol) containing a zein core surrounded by surfactant (Tween-NPs) or carboxymethyl chitosan (CMCS-NPs) shell were fabricated with different particle sizes, surface charges and colloidal stabilities. Changes of physicochemical properties for the two nano-resveratrols, as well as their antioxidant potentials and cytotoxicity were investigated during a static in vitro gastrointestinal tract (GIT) digestion. Results showed that the Tween-NPs had a much higher bioaccessibility (84.1 ± 19.2%) than that of CMCS-NPs (36.6 ± 4.2%) after the GIT digestion, which was expected due to the steric barrier of the CMCS coating. Both nano-resveratrols could sustained their antioxidant activities after digestion. However, the Tween-NPs had a significantly higher cytotoxicity against MCF-7 cells than CMCS-NPs and free resveratrol, while a reduction in cytotoxicity of Tween-NPs was observed after the digestion. The bioactivities results were well correlated with the physicochemical properties and dissolution of resveratrol under environmental stress.


Asunto(s)
Quitosano , Nanopartículas , Resveratrol/farmacología , Antioxidantes/farmacología , Polisorbatos , Nanopartículas/química , Biopolímeros , Digestión , Tamaño de la Partícula , Quitosano/farmacología , Quitosano/química
4.
J Colloid Interface Sci ; 650(Pt B): 1893-1906, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37517189

RESUMEN

The implantation of medical devices is frequently accompanied by the invasion of bacteria, which may lead to implant failure. Therefore, an intelligent and responsive coating seems particularly essential in hindering implant-associated infections. Herein, a self-defensive antimicrobial coating, accompanied by silk fibroin as a valve, was successfully prepared on the titanium (Ti-Cu@SF) for pH-controlled release of Cu2+. The results showed that the layer could set free massive Cu2+ to strive against E. coli and S. aureus for self-defense when exposed to a slightly acidic condition. By contrary, a little Cu2+ was released in the physiological situation, which could avoid damage to the normal cells and showed excellent in vitro pH-dependent antibiosis. Besides, in vivo experiment confirmed that Ti-Cu@SF could work as an antibacterial material to kill S. aureus keenly and display negligible toxicity in vivo. Consequently, the design provided support for endowing the layer with outstanding biocompatibility and addressing the issue of bacterial infection during the implantation of Ti substrates.


Asunto(s)
Infecciones Bacterianas , Fibroínas , Humanos , Fibroínas/farmacología , Preparaciones de Acción Retardada/farmacología , Staphylococcus aureus/fisiología , Escherichia coli , Antibacterianos/farmacología , Concentración de Iones de Hidrógeno , Titanio/farmacología , Materiales Biocompatibles Revestidos/farmacología , Seda
5.
ACS Biomater Sci Eng ; 8(4): 1464-1475, 2022 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-35302342

RESUMEN

Titanium (Ti) and its alloys are extensively applied in dental and orthopedic implants due to their characteristics of good mechanical property and corrosion resistance. However, Ti and its alloys suffer from the absence of certain biological activity and antibacterial ability. Herein, we synthesized a titanium dioxide (TiO2) nanorod array on the surface of a Ti plate, and the obtained TiO2 nanorod array was further modified by Cu ions through ion implantation technology in an attempt to endow medical Ti with an antibacterial ability and maintain a normal biological function synchronously. The antibacterial ability of the TiO2 nanorod array with the incorporation of Cu ions was vastly improved compared with those of the unmodified TiO2 nanorod array and pure Ti. In particular, owing to the synergy between the chemical damage of the released Cu2+ to the cell and the mechanical cracking of the TiO2 nanorod array, the antibacterial rate of the TiO2 nanorod array modified by Cu ions against Escherichia coli or Staphylococcus aureus could reach 99%. In addition, no cytotoxicity was detected in such prepared coating during the CCK-8 assay. Moreover, the corrosion resistance of the sample was significantly better than that of pure Ti. Overall, we demonstrated that the application of ion implantation technology could open up a promising pathway to design and develop further antibacterial material for the biomedical domain.


Asunto(s)
Cobre , Nanotubos , Aleaciones/química , Antibacterianos/química , Antibacterianos/farmacología , Cobre/química , Cobre/farmacología , Escherichia coli , Iones , Titanio
6.
Front Cell Infect Microbiol ; 12: 980157, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159649

RESUMEN

Post-treatment apical periodontitis (PoAP) occurs when root canal treatment has not adequately eliminated bacterial invasion and infection. Yet little is known about the bacterial composition and changes related to the etiology and pathogenesis of PoAP. In this study, clinical samples classified as root apex (HARD) and periapical granulation tissues (SOFT) were separately collected from 10 patients with PoAP. The microbiota of each sample was characterized by 16S rRNA gene sequencing, and the obtained dataset was coanalyzed with 20 NCBI sequence read archive (SRA) datasets of healthy oral (HO) and primary apical periodontitis (PAP). We observed 2522 operational taxonomic units (OTUs) belonging to 29 phyla, and all samples shared 86.5% of the sequence reads. The OTUs affiliated with Bacteroidetes, Firmicutes, Proteobacteria, Fusobacteria, and Actinobacteria, were identified as core microbiota, which accounted for nearly 90% of 16S rRNA sequences in all samples. However, the principal coordinates analysis (PCoA) of the beta diversity demonstrated that the three periapical statuses have distinct microbial compositions. Compared with HO and PoAP, Actinomyces has a significantly increased abundance in PAP. The microbial diversities in PoAP were significantly lower than those in the HO and PAP (p<0.05). The relative abundance of most bacterial taxa was decreasing, except that Clostridia and Synergistia were increased. Furthermore, we explored the potential metabolic differences of the microbial communities by KEGG pathway prediction. We revealed that the microbiota of PoAP might have a more active metabolic capacity, including carbohydrate metabolism, energy metabolism, and enzyme cofactor/carrier biosynthesis (p<0.05). Our study revealed that invasion of opportunistic pathogens such as Clostridia and Synergistia might play a significant role in PoAP, thus guiding the further study of complex microbial-host interactions and the development of more effective diagnostic and therapeutic methods.


Asunto(s)
Microbiota , Periodontitis Periapical , Bacterias/genética , Coenzimas , ADN Bacteriano/análisis , ADN Bacteriano/genética , Firmicutes/genética , Humanos , Microbiota/genética , Periodontitis Periapical/microbiología , Periodontitis Periapical/terapia , ARN Ribosómico 16S/genética
7.
J Anim Sci ; 100(6)2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35486739

RESUMEN

Our objectives were to compare the antifungal activity of 5 lignosulfonates, and 2 chitosans against fungi isolated from spoiled hay, and assess the effects of an optimized lignosulfonate, chitosan, and propionic acid (PRP) on high-moisture alfalfa hay. In experiment 1, we determined the minimum inhibitory concentration and minimum fungicidal concentration of 4 sodium lignosulfonates, 1 magnesium lignosulfonate, 2 chitosans, and PRP (positive control) against Aspergillus amoenus, Mucor circinelloides, Penicillium solitum, and Debaromyces hansenii at pH 4 and 6. Among sodium lignosulfonates, the one from Sappi Ltd. (NaSP) was the most antifungal at pH 4. However, chitosans had the strongest fungicidal activity with the exception of M. circinelloides at both pH 4 and 6. PRP had more antifungal effects than NaSP and was only better than chitosans for M. circinelloides. In experiment 2, we evaluated the effects of 3 additives (ADV): optimized NaSP (NaSP-O, UMaine), naïve chitosan (ChNv, Sigma-Aldrich), and PRP on high-moisture alfalfa hay. The experimental design was a randomized complete block design replicated 5 times. Treatment design was the factorial combination of 3 ADV× 5 doses (0, 0.25, 0.5, 1, and 2% w/w fresh basis). Additives were added to 35 g of sterile alfalfa hay (71.5 ± 0.23% DM), inoculated with a mixture of previously isolated spoilage fungi (5.8 log cfu/fresh g), and aerobically incubated in vitro for 23 d (25°C). After incubation, DM losses were reduced by doses as low as 0.25% for both NaSP-O and PRP (x¯=1.61) vs. untreated hay (24.0%), partially due to the decrease of mold and yeast counts as their doses increased. Also, hay NH3-N was lower in NaSP-O and PRP, with doses as low as 0.25%, relative to untreated hay (x¯=1.13 vs. 7.80% of N, respectively). Both NaSP-O and PRP increased digestible DM recovery (x¯=69.7) and total volatile fatty acids (x¯=94.3), with doses as low as 0.25%, compared with untreated hay (52.7% and 83.8 mM, respectively). However, ChNv did not decrease mold nor yeast counts (x¯=6.59 and x¯=6.16 log cfu/fresh g, respectively) and did not prevent DM losses relative to untreated hay. Overall, when using an alfalfa hay substrate in vitro, NaSP-O was able to prevent fungal spoilage to a similar extent to PRP. Thus, further studies are warranted to develop NaSP-O as a hay preservative under field conditions.


In our first experiment, we assessed the antifungal activity of two major types of byproducts, one known as lignosulfonates (5 types), which are generated by paper mills, and another known as chitosans (2 types), which are generated from shellfish. These were tested against four fungi isolated from spoiled hay. We observed that acidic conditions are not necessary for chitosans but are crucial to activate the antifungal properties of lignosulfonates. Also, we found that sodium lignosulfonate from Sappi Ltd. was the most antifungal relative to other sodium lignosulfonates from other manufacturers. Chitosans had stronger fungicidal activity than propionic acid or lignosulfonates against all but one mold tested. In our second experiment, we compared the best treatments from experiment 1 against propionic acid using alfalfa hay as a substrate to grow the same fungi tested in experiment 1. None of the doses of chitosan prevented spoilage on high moisture hay, showing results similar to untreated hay. In contrast, an optimized sodium lignosulfonate and propionic acid prevented fungal spoilage of alfalfa hay with doses as low as 0.25%.


Asunto(s)
Quitosano , Medicago sativa , Animales , Antifúngicos/farmacología , Quitosano/farmacología , Técnicas In Vitro/veterinaria , Lignina/análogos & derivados , Medicago sativa/microbiología , Sodio , Levaduras
8.
ACS Appl Bio Mater ; 4(8): 6137-6147, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35006926

RESUMEN

To improve the antibacterial effect of a poly(ε-caprolactone)/gelatin (PCL/Gt) composite, Cu nanoparticles (Cu NPs) were synthesized as an antibacterial agent, and a Cu NPs/PCL/Gt fiber membrane was thus fabricated via green electrospinning. The results showed that the Cu NPs/PCL/Gt fiber membrane with a uniform and complete structure exhibited high porosity and water absorption, favorable hydrophilicity, good mechanical and thermal properties, and satisfactory antibacterial activity. The easy preparation and good comprehensive property implied the great potential application of the Cu NPs/PCL/Gt fiber membrane in various fields (e.g., wound dressing and antibacterial clothing). In addition, the synthesis in this work would offer a promising approach for the preparation of a metal nanoparticle/polymer fiber material with good antibacterial property.


Asunto(s)
Nanofibras , Nanopartículas , Antibacterianos/farmacología , Gelatina/farmacología , Nanofibras/química , Poliésteres , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA