Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 14(2): e0210892, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30753186

RESUMEN

The content and size of stone cell clusters affects the quality of pear fruit, and monolignol polymerization and deposition in the cell walls constitute a required step for stone cell formation. Laccase (LAC) is the key enzyme responsible for the polymerization of monolignols. However, there are no reports on the LAC family in pear (Pyrus bretschneideri), and the identity of the members responsible for lignin synthesis has not been clarified. Here, 41 LACs were identified in the whole genome of pear. All Pyrus bretschneideri LACs (PbLACs) were distributed on 13 chromosomes and divided into four phylogenetic groups (I-IV). In addition, 16 segmental duplication events were found, implying that segmental duplication was a primary reason for the expansion of the PbLAC family. LACs from the genomes of three Rosaceae species (Prunus mummer, Prunus persica, and Fragaria vesca) were also identified, and an interspecies collinearity analysis was performed. The phylogenetic analysis, sequence alignments and spatiotemporal expression pattern analysis suggested that PbLAC1, 5, 6, 29, 36 and 38 were likely associated with lignin synthesis and stone cell formation in fruit. The two target genes of Pyr-miR1890 (a microRNA identified from pear fruit that is associated with lignin and stone cell accumulation), PbLAC1 and PbLAC14, were selected for genetic transformation. Interfamily transfer of PbLAC1 into Arabidopsis resulted in a significant increase (approximately 17%) in the lignin content and thicker cell walls in interfascicular fibre and xylem cells, which demonstrated that PbLAC1 is involved in lignin biosynthesis and cell wall development. However, the lignin content and cell wall thickness were not changed significantly in the PbLAC14-overexpressing transgenic Arabidopsis plants. This study revealed the function of PbLAC1 in lignin synthesis and provides important insights into the characteristics and evolution of the PbLAC family.


Asunto(s)
Frutas , Genoma de Planta , Lacasa , Lignina , Proteínas de Plantas , Pyrus , Frutas/enzimología , Frutas/genética , Estudio de Asociación del Genoma Completo , Lacasa/biosíntesis , Lacasa/genética , Lignina/biosíntesis , Lignina/genética , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Pyrus/enzimología , Pyrus/genética
2.
PLoS One ; 12(10): e0187114, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29088238

RESUMEN

Stone cell content is thought to be one of the key determinants for fruit quality in pears. However, the molecular mechanism of stone cell development remains poorly understood. In this study, we found that the stone cell clusters (SCCs) distribution and area in 'Dangshan Su' (with abundant stone cells) were higher as compared to 'Lianglizaosu' (low stone cell content bud sport of 'Dangshan Su') based on the histochemical staining, and the correlations of lignin content with stone cell content and SCC area was significant. The fruits of 'Dangshan Su' and 'Lianglizaosu' at three different developmental stages (23 and 55 days after flowering and mature) were sampled for comparative transcriptome analysis to explore the metabolic pathways associated with stone cell development. A total of 42444 unigenes were obtained from two varieties, among which 7203 differentially expressed genes (DEGs) were identified by comparison of the six transcriptomes. Specifically, many DEGs associated with lignin biosynthesis were identified, including coumaroylquinate 3-monooxygenase (C3H), shikimate O-hydroxycinnamoyltransferase (HCT), ferulate 5-hydroxylase (F5H), cinnamyl alcohol dehydrogenase (CAD) and peroxidase (POD), as well as genes related to carbon metabolism, such as sorbitol dehydrogenase-like (SDH-like) and ATP-dependent 6-phosphofructokinase (ATP-PFK). At the peak of the stone cell content (55 days after flowering), the expression level of these genes in 'Dangshan Su' was significantly increased compared with 'Lianglizaosu', indicating that these genes were closely related to stone cell development. We validated the transcriptional levels of 33 DEGs using quantitative real-time polymerase chain reaction (qRT-PCR) analysis. The results were consistent with the transcriptome analysis, indicating the reliability of transcriptome data. In addition, subcellular localization analysis of three DEGs in lignin synthesis (PbC3H, PbF5H and PbPOD) revealed that these proteins are mainly distributed in the cell membrane and cytoplasm. These results provide new insights into the molecular mechanism of stone cell formation.


Asunto(s)
Frutas/citología , Pyrus/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Estudios de Asociación Genética , Lignina/metabolismo , Redes y Vías Metabólicas/genética , Pyrus/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA