Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 12(4): 247-53, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26854668

RESUMEN

Conversion of lignocellulosic biomass into value-added products provides important environmental and economic benefits. Here we report the engineering of an unconventional metabolism for the production of tricarboxylic acid (TCA)-cycle derivatives from D-xylose, L-arabinose and D-galacturonate. We designed a growth-based selection platform to identify several gene clusters functional in Escherichia coli that can perform this nonphosphorylative assimilation of sugars into the TCA cycle in less than six steps. To demonstrate the application of this new metabolic platform, we built artificial biosynthetic pathways to 1,4-butanediol (BDO) with a theoretical molar yield of 100%. By screening and engineering downstream pathway enzymes, 2-ketoacid decarboxylases and alcohol dehydrogenases, we constructed E. coli strains capable of producing BDO from D-xylose, L-arabinose and D-galacturonate. The titers, rates and yields were higher than those previously reported using conventional pathways. This work demonstrates the potential of nonphosphorylative metabolism for biomanufacturing with improved biosynthetic efficiencies.


Asunto(s)
Arabinosa/metabolismo , Butileno Glicoles/metabolismo , Escherichia coli/metabolismo , Ácidos Hexurónicos/metabolismo , Lignina/metabolismo , Xilosa/metabolismo , Vías Biosintéticas , Escherichia coli/enzimología , Escherichia coli/genética , Ácidos Cetoglutáricos/metabolismo , Ingeniería Metabólica , Familia de Multigenes
2.
Proc Natl Acad Sci U S A ; 111(23): 8357-62, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24912182

RESUMEN

Development of sustainable and biodegradable materials is essential for future growth of the chemical industry. For a renewable product to be commercially competitive, it must be economically viable on an industrial scale and possess properties akin or superior to existing petroleum-derived analogs. Few biobased polymers have met this formidable challenge. To address this challenge, we describe an efficient biobased route to the branched lactone, ß-methyl-δ-valerolactone (ßMδVL), which can be transformed into a rubbery (i.e., low glass transition temperature) polymer. We further demonstrate that block copolymerization of ßMδVL and lactide leads to a new class of high-performance polyesters with tunable mechanical properties. Key features of this work include the creation of a total biosynthetic route to produce ßMδVL, an efficient semisynthetic approach that employs high-yielding chemical reactions to transform mevalonate to ßMδVL, and the use of controlled polymerization techniques to produce well-defined PLA-PßMδVL-PLA triblock polymers, where PLA stands for poly(lactide). This comprehensive strategy offers an economically viable approach to sustainable plastics and elastomers for a broad range of applications.


Asunto(s)
Elastómeros/química , Poliésteres/química , Polímeros/química , Pironas/química , Vías Biosintéticas , Carbohidratos/química , Cromatografía en Gel , Módulo de Elasticidad , Elastómeros/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Ingeniería Genética , Espectroscopía de Resonancia Magnética , Ácido Mevalónico/química , Ácido Mevalónico/metabolismo , Modelos Químicos , Estructura Molecular , Poliésteres/metabolismo , Polimerizacion , Polímeros/metabolismo , Pironas/metabolismo , Dispersión del Ángulo Pequeño , Estrés Mecánico , Temperatura , Difracción de Rayos X
3.
Metab Eng ; 38: 285-292, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27697562

RESUMEN

Dicarboxylic acids are attractive biosynthetic targets due to their broad applications and their challenging manufacturing process from fossil fuel feedstock. Mesaconate is a branched, unsaturated dicarboxylic acid that can be used as a co-monomer to produce hydrogels and fire-retardant materials. In this study, we engineered nonphosphorylative metabolism to produce mesaconate from d-xylose and l-arabinose. This nonphosphorylative metabolism is orthogonal to the intrinsic pentose metabolism in Escherichia coli and has fewer enzymatic steps and a higher theoretical yield to TCA cycle intermediates than the pentose phosphate pathway. Here mesaconate production was enabled from the d-xylose pathway and the l-arabinose pathway. To enhance the transportation of d-xylose and l-arabinose, pentose transporters were examined. We identified the pentose/proton symporter, AraE, as the most effective transporter for both d-xylose and l-arabinose in mesaconate production process. Further production optimization was achieved by operon screening and metabolic engineering. These efforts led to the engineered strains that produced 12.5g/l and 13.2g/l mesaconate after 48h from 20g/l of d-xylose and l-arabinose, respectively. Finally, the engineered strain overexpressing both l-arabinose and d-xylose operons produced 14.7g/l mesaconate from a 1:1 d-xylose and l-arabinose mixture with a yield of 85% of the theoretical maximum. (0.87g/g). This work demonstrates an effective system that converts pentoses into a value-added chemical, mesaconate, with promising titer, rate, and yield.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/fisiología , Fumaratos/metabolismo , Maleatos/metabolismo , Ingeniería Metabólica/métodos , Redes y Vías Metabólicas/genética , Pentosas/metabolismo , Arabinosa/metabolismo , Vías Biosintéticas/genética , Proteínas de Escherichia coli/metabolismo , Fumaratos/aislamiento & purificación , Mejoramiento Genético/métodos , Lignina/metabolismo , Maleatos/aislamiento & purificación , Fosforilación/genética , Xilosa/metabolismo
4.
J Ind Microbiol Biotechnol ; 43(8): 1037-58, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27260524

RESUMEN

Advances in science and technology have resulted in the rapid development of biobased plastics and the major drivers for this expansion are rising environmental concerns of plastic pollution and the depletion of fossil-fuels. This paper presents a broad view on the recent developments of three promising biobased plastics, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and polybutylene succinate (PBS), well known for their biodegradability. The article discusses the natural and recombinant host organisms used for fermentative production of monomers, alternative carbon feedstocks that have been used to lower production cost, different metabolic engineering strategies used to improve product titers, various fermentation technologies employed to increase productivities and finally, the different downstream processes used for recovery and purification of the monomers and polymers.


Asunto(s)
Butileno Glicoles/metabolismo , Ingeniería Metabólica , Poliésteres/metabolismo , Polihidroxialcanoatos/biosíntesis , Polímeros/metabolismo , Biodegradación Ambiental , Fermentación , Plásticos/metabolismo , Polihidroxialcanoatos/metabolismo
5.
Nat Mater ; 5(2): 153-8, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16444261

RESUMEN

Erosion behaviour governs the use of physical hydrogels in biomedical applications ranging from controlled release to cell encapsulation. Genetically engineered protein hydrogels offer unique means of controlling the erosion rate by engineering their amino acid sequences and network topology. Here, we show that the erosion rate of such materials can be tuned by harnessing selective molecular recognition, discrete aggregation number and orientational discrimination of coiled-coil protein domains. Hydrogels formed from a triblock artificial protein bearing dissimilar helical coiled-coil end domains (P and A) erode more than one hundredfold slower than hydrogels formed from those bearing the same end domains (either P or A). The reduced erosion rate is a consequence of the fact that looped chains are suppressed because P and A tend not to associate with each other. Thus, the erosion rate can be tuned over several orders of magnitude in artificial protein hydrogels, opening the door to diverse biomedical applications.


Asunto(s)
Hidrogeles/química , Proteínas/química , Proteínas/síntesis química , Secuencia de Aminoácidos , Materiales Biocompatibles/química , Modelos Moleculares
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA