Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Biotechnol ; 14: 32, 2014 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-24766767

RESUMEN

BACKGROUND: Researchers are looking for biomimetic mineralization of ena/mel to manage dental erosion. This study evaluated biomimetic mineralization of demineralized enamel induced by a synthetic and self-assembled oligopeptide amphiphile (OPA). RESULTS: The results showed that the OPA self-assembled into nano-fibres in the presence of calcium ions and in neutral acidity. The OPA was alternately immersed in calcium chloride and sodium hypophosphate solutions to evaluate its property of mineralization. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) showed nucleation and growth of amorphous calcium phosphate along the self-assembled OPA nano-fibres when it was repetitively exposed to solutions with calcium and phosphate ions. Energy dispersive spectrometry (EDS) confirmed that these nano-particles contained calcium and phosphate. Furthermore, electron diffraction pattern suggested that the nano-particles precipitated on OPA nano-fibres were comparable to amorphous calcium phosphate. Acid-etched human enamel slices were incubated at 37°C in metastable calcium phosphate solution with the OPA for biomimetic mineralization. SEM and X-ray diffraction indicated that the OPA induced the formation of hydroxyapatite crystals in organized bundles on etched enamel. TEM micrographs revealed there were 20-30 nm nano-amorphous calcium phosphate precipitates in the biomimetic mineralizing solution. The particles were found separately bound to the oligopeptide fibres. Biomimetic mineralization with or without the oligopeptide increased demineralized enamel microhardness. CONCLUSIONS: A novel OPA was successfully fabricated, which fostered the biomimetic mineralization of demineralized enamel. It is one of the primary steps towards the design and construction of novel biomaterial for future clinical therapy of dental erosion.


Asunto(s)
Biomimética , Esmalte Dental/metabolismo , Oligopéptidos/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Fosfatos de Calcio/química , Fosfatos de Calcio/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Nanofibras/química , Oligopéptidos/química , Ácidos Fosfínicos/química
2.
Odontology ; 102(1): 14-21, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23011475

RESUMEN

In stem cell-based dental tissue engineering, the goal is to create tooth-like structures using scaffold materials to guide the dental stem cells. In this study, the effect of fiber alignment and hydroxyapatite content in biodegradable electrospun PLGA scaffolds have been investigated. Fiber orientation of the scaffolds was random or aligned in bundles. For scaffolds with prefabricated orientation, scaffolds were fabricated from PLGA polymer solution containing 0, 10 or 20 % nano-hydroxyapatite. The scaffolds were seeded with porcine cells isolated from tooth buds (dental mesenchymal, dental epithelial, and mixed dental mesenchymal/epithelial cells). Samples were collected at 1, 3 and 6 weeks. Analyses were performed for cell proliferation, ALP activity, and cell morphology. Fiber alignment showed an effect on cell orientation in the first week after cell seeding, but had no long-term effect on cell alignment or organized calcified matrix deposition once the cells reach confluency. Scaffold porosity was sufficient to allow migration of mesenchymal cells. Hydroxyapatite incorporation did not have a positive effect on cell proliferation, especially of epithelial cells, but seemed to promote differentiation. Concluding, scaffold architecture is important to mesenchymal cell morphology, but has no long-term effect on cell alignment or organized ECM deposition. nHA incorporation does have an effect on cell proliferation, differentiation and ECM production, and should be regarded as a bioactive component of dental bioengineered scaffolds.


Asunto(s)
Durapatita/análisis , Nanoestructuras , Células Madre/citología , Andamios del Tejido , Diente/citología , Fosfatasa Alcalina/metabolismo , Materiales Biocompatibles , Técnicas In Vitro , Ácido Láctico , Microscopía Electrónica de Rastreo , Ácido Poliglicólico , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Células Madre/enzimología , Diente/enzimología
3.
Water Res ; 254: 121399, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38447375

RESUMEN

Despite numerous studies investigating the occurrence and fate of microplastics, no effort has been devoted toward exploring the characteristics of dissolved organic matter (DOM) leached from face masks mainly made of plastics and additives used in large quantities during the COVID-19 pandemic. By using FTIR, UV-vis, fluorescence EEM coupling with FRI and PARAFAC, and kinetic models of leaching experiments, we explored the leaching behaviors of face mask-derived DOM (FM-DOM) from commonly used face masks including N95, KN95, medical surgical masks, etc. The concentration of FM-DOM increased quickly at early 0-48 h and reached equilibrium at about 48 h measured in terms of dissolved organic carbon and fluorescence intensity. The protein-like materials ranged from 80.32 % to 89.40 % of percentage fluorescence response (Pi,n) were dominant in four types of FM-DOM analyzed by fluorescence EEM-FRI during the leaching experiments from 1 to 360 h. Four fluorescent components were identified, which included tryptophan-like components, tyrosine-like components, microbial protein-like components, and fulvic-like components with fluorescence EEM-PARAFAC models. The multi-order kinetic model (Radj2 0.975-0.999) fitted better than the zero-order and first-order kinetic model (Radj2 0.936-0.982) for all PARAFAC components of FM-DOM based on equations derived by pseudo kinetic models. The leaching rate constants (kn) ranged from 0.058 to 30.938 and the half-life times (T1/2) ranged from 2.73 to 24.87 h for four FM-DOM samples, following the solubility order of fulvic-like components (C4) > microbial protein-like components (C3) > tryptophan-like components (C1) > tyrosine-like components (C2) for FM-DOM from four types of face masks during the leaching experiment from 0 to 360 h. These novel findings will contribute to the understanding of the underappreciated environment impact of face masks in aquatic ecosystems.


Asunto(s)
Materia Orgánica Disuelta , Plásticos , Humanos , Ecosistema , Máscaras , Pandemias , Triptófano , Espectrometría de Fluorescencia , Tirosina , Sustancias Húmicas/análisis , Análisis Factorial
4.
Environ Int ; 185: 108489, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38367553

RESUMEN

Microplastics (MPs) are environmental pollutants and can be inhaled by humans to threaten health. The lung tissue, responsible for the gas exchange between the body and the environment, is vulnerable to MPs exposure. However, from the perspective of cellular senescence, the effect of MPs on lung cells and tissues has not yet been deeply dissected. In this study, we reported that all the four typical MPs exhibited the significant biological effects in term of inducing senescence of human lung derived cells A549 and BEAS-2B in vitro. We further found that polyvinyl chloride (PVC) increased the reactive oxygen species (ROS) level in A549 cells and that PVC-induced senescent characteristics could be largely reversed by antioxidant treatment. Importantly, intratracheal instillation of PVC MPs in mice could effectively impair their physical function, induce the increased systemic inflammation level, cause the accumulation of senescent cells. Our study demonstrates that MPs induce senescence in human lung epithelial cells and mouse lungs by activating ROS signaling, and provides new insight into the potential pathogenesis of MPs on lung diseases.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Humanos , Animales , Ratones , Plásticos , Especies Reactivas de Oxígeno , Células Epiteliales , Pulmón
5.
Bioengineering (Basel) ; 10(11)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-38002402

RESUMEN

Currently used methods to repair craniomaxillofacial (CMF) bone and tooth defects require a multi-staged surgical approach for bone repair followed by dental implant placement. Our previously published results demonstrated significant bioengineered bone formation using human dental pulp stem cell (hDPSC)-seeded tyrosine-derived polycarbonate scaffolds (E1001(1K)-bTCP). Here, we improved upon this approach using a modified TyroFill (E1001(1K)/dicalcium phosphate dihydrate (DCPD)) scaffold-supported titanium dental implant model for simultaneous bone-dental implant repair. TyroFill scaffolds containing an embedded titanium implant, with (n = 3 each time point) or without (n = 2 each time point) seeded hDPCs and Human Umbilical Vein Endothelial Cells (HUVECs), were cultured in vitro. Each implant was then implanted into a 10 mm full-thickness critical-sized defect prepared on a rabbit mandibulee. After 1 and 3 months, replicate constructs were harvested and analyzed using Micro-CT histological and IHC analyses. Our results showed significant new bone formation surrounding the titanium implants in cell-seeded TyroFill constructs. This study indicates the potential utility of hDPSC/HUVEC-seeded TyroFill scaffolds for coordinated CMF bone-dental implant repair.

6.
Regen Biomater ; 10: rbac082, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36683759

RESUMEN

Silver has been widely used for surface modification to prevent implant-associated infections. However, the inherent cytotoxicity of silver greatly limited the scope of its clinical applications. The construction of surfaces with both good antibacterial properties and favorable cytocompatibility still remains a challenge. In this study, a structurally homogeneous dopamine-silver (DA/Ag) nanocomposite was fabricated on the implant surface to balance the antibacterial activity and cytocompatibility of the implant. The results show that the DA/Ag nanocomposites prepared under the acidic conditions (pH = 4) on the titanium surface are homogeneous with higher Ag+ content, while an obvious core (AgNPs)-shell (PDA) structure is formed under neutral (pH = 7) and alkaline conditions (pH = 10), and the subsequent heat treatment enhanced the stability of PDA-AgNPs nanocomposite coatings on porous titanium. The antibacterial test, cytotoxicity test, hypodermic implantation and osteogenesis test revealed that the homogeneous PDA-AgNPs nanocomposite coating achieved the balance between the antibacterial ability and cytocompatibility, and had the best outcomes for soft tissue healing and bone formation around the implants. This study provides a facile strategy for preparing silver-loaded surfaces with both good antibacterial effect and favorable cytocompatibility, which is expected to further improve the therapeutic efficacy of silver composite-coated dental implants.

7.
Colloids Surf B Biointerfaces ; 230: 113477, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37544027

RESUMEN

Osteogenesis surrounding dental implants is initiated by a series of early physiological events, including the inflammatory response. However, the persistence of an anti-infection surface often results in compromised histocompatibility and osseointegration. Here, we presented a programmed surface containing both silver nanoparticles (AgNPs) and silver ions (Ag+) with a heterogeneous structure and time-dependent functionalities. The AgNPs were located at the surface of the heparin-chitosan polyelectrolyte coating (PEM), whereas Ag+ was distributed at both the surface and inside of the coating under optimized conditions (pH=4). The optimized coating (Ag-4) exhibited potent bactericidal activity at the early stage (12 and 24 h after inoculation) and a sustained antibacterial efficacy in the subsequent stage (one or two weeks), as it gradually depleted. Furthermore, compared to coatings with sustained high silver concentrations in bacteria-cell coculture experiments, the degradable Ag-4 coating demonstrated improved cytocompatibility, better cell viability, and morphology over time. At a later stage (within one month), the in vivo test revealed that Ag-4-coated titanium had superior histocompatibility and osteogenesis outcomes compared to bare titanium in a bacteria-exposed environment. The programmed surface of dental implants presented in this study offers innovative ideas for sequential antibacterial effects and osseointegration.


Asunto(s)
Implantes Dentales , Nanopartículas del Metal , Oseointegración , Nanopartículas del Metal/química , Plata/farmacología , Plata/química , Titanio/farmacología , Titanio/química , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/química , Antibacterianos/farmacología , Antibacterianos/química , Propiedades de Superficie
8.
Bioengineering (Basel) ; 9(5)2022 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-35621493

RESUMEN

Here, we describe the characterization of tooth-germ organoids, three-dimensional (3D) constructs cultured in vitro with the potential to develop into living teeth. To date, the methods used to successfully create tooth organoids capable of forming functional teeth have been quite limited. Recently, hydrogel microparticles (HMP) have demonstrated utility in tissue repair and regeneration based on their useful characteristics, including their scaffolding ability, effective cell and drug delivery, their ability to mimic the natural tissue extracellular matrix, and their injectability. These outstanding properties led us to investigate the utility of using HMPs (average diameter: 158 ± 32 µm) derived from methacrylated gelatin (GelMA) (degree of substitution: 100%) to create tooth organoids. The tooth organoids were created by seeding human dental pulp stem cells (hDPSCs) and porcine dental epithelial cells (pDE) onto the HMPs, which provided an extensive surface area for the cells to effectively attach and proliferate. Interestingly, the cell-seeded HMPs cultured on low-attachment tissue culture plates with gentle rocking self-assembled into organoids, within which the cells maintained their viability and morphology throughout the incubation period. The self-assembled organoids reached a volume of ~50 mm3 within two weeks of the in vitro tissue culture. The co-cultured hDPSC-HMP and pDE-HMP structures effectively attached to each other without any externally applied forces. The presence of polarized, differentiated dental cells in these composite tooth-bud organoids demonstrated the potential of self-assembled dental cell HMPs to form tooth-bud organoid-like structures for potential applications in tooth regeneration strategies.

9.
Trends Mol Med ; 27(5): 501-511, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33781688

RESUMEN

Tooth defects are an extremely common health condition that affects millions of individuals. Currently used dental repair treatments include fillings for caries, endodontic treatment for pulp necrosis, and dental implants to replace missing teeth, all of which rely on the use of synthetic materials. By contrast, the fields of tissue engineering and regenerative medicine and dentistry (TERMD) use biologically based therapeutic strategies for vital tissue regeneration, and thus have the potential to regenerate living tissues. Methods to create bioengineered replacement teeth benefit from a detailed understanding of the molecular signaling networks regulating natural tooth development. We discuss how key signaling pathways regulating natural tooth development are being exploited for applications in TERMD approaches for vital tooth regeneration.


Asunto(s)
Odontogénesis/fisiología , Andamios del Tejido , Diente , Humanos , Medicina Regenerativa/métodos , Transducción de Señal , Células Madre/metabolismo , Ingeniería de Tejidos , Diente/embriología , Diente/crecimiento & desarrollo , Diente/patología , Germen Dentario/crecimiento & desarrollo , Germen Dentario/metabolismo
10.
Methods ; 47(2): 122-8, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18845257

RESUMEN

Proper rehabilitation of craniofacial defects is challenging because of the complexity of the anatomy and the component tissue types. The ability to simultaneously coordinate the regeneration of multiple tissues would make reconstruction more efficient and might reduce morbidity and improve outcomes. The craniofacial complex is unique because of the presence of teeth, in addition to skin, bone, cartilage, muscle, vascular, and neural tissues since teeth naturally grow in coordination with the craniofacial skeleton, our group developed an autologous, tooth-bone hybrid model to facilitate repair of mandibular defects in the Yucatan minipig. The hybrid tooth-bone construct was prepared by combining tooth bud cell-seeded scaffolds with autologous iliac crest bone marrow derived stem cell-seeded scaffolds, which were transplanted back into surgically created mandibular defects in the same minipig. The constructs were harvested after 12 and 20 weeks of growth. The resulting bone/tooth constructs were evaluated by X-ray, ultra high-resolution volume computed tomography (VCT), histological, immunohistochemical analyses, and transmission electron microscopy (TEM). The observed formation of small tooth-like structures consisting of organized dentin, enamel, pulp, cementum, periodontal ligament, and surrounded by regenerated alveolar bone, suggests the feasibility for regeneration of teeth and associated alveolar bone, in a single procedure. This model provides an accessible method for future clinical applications in humans.


Asunto(s)
Anomalías Craneofaciales/terapia , Ingeniería de Tejidos/métodos , Diente/trasplante , Animales , Regeneración Ósea/fisiología , Trasplante Óseo/métodos , Huesos/cirugía , Anomalías Craneofaciales/cirugía , Esmalte Dental/trasplante , Femenino , Humanos , Modelos Animales , Porcinos , Porcinos Enanos , Andamios del Tejido
11.
Artículo en Inglés | MEDLINE | ID: mdl-32766225

RESUMEN

The ability to effectively repair craniomaxillofacial (CMF) bone defects in a fully functional and aesthetically pleasing manner is essential to maintain physical and psychological health. Current challenges for CMF repair therapies include the facts that craniofacial bones exhibit highly distinct properties as compared to axial and appendicular bones, including their unique sizes, shapes and contours, and mechanical properties that enable the ability to support teeth and withstand the strong forces of mastication. The study described here examined the ability for tyrosine-derived polycarbonate, E1001(1K)/ß-TCP scaffolds seeded with human dental pulp stem cells (hDPSCs) and human umbilical vein endothelial cells (HUVECs) to repair critical sized alveolar bone defects in an in vivo rabbit mandible defect model. Human dental pulp stem cells are uniquely suited for use in CMF repair in that they are derived from the neural crest, which naturally contributes to CMF development. E1001(1k)/ß-TCP scaffolds provide tunable mechanical and biodegradation properties, and are highly porous, consisting of interconnected macro- and micropores, to promote cell infiltration and attachment throughout the construct. Human dental pulp stem cells/HUVECs seeded and acellular E1001(1k)/ß-TCP constructs were implanted for one and three months, harvested and analyzed by micro-computed tomography, then demineralized, processed and sectioned for histological and immunohistochemical analyses. Our results showed that hDPSC seeded E1001(1k)/ß-TCP constructs to support the formation of osteodentin-like mineralized jawbone tissue closely resembling that of natural rabbit jaw bone. Although unseeded scaffolds supported limited alveolar bone regeneration, more robust and homogeneous bone formation was observed in hDPSC/HUVEC-seeded constructs, suggesting that hDPSCs/HUVECs contributed to enhanced bone formation. Importantly, bioengineered jaw bone recapitulated the characteristic morphology of natural rabbit jaw bone, was highly vascularized, and exhibited active remodeling by the presence of osteoblasts and osteoclasts on newly formed bone surfaces. In conclusion, these results demonstrate, for the first time, that E1001(1K)/ ß-TCP scaffolds pre-seeded with human hDPSCs and HUVECs contributed to enhanced bone formation in an in vivo rabbit mandible defect repair model as compared to acellular E1001(1K)/ß-TCP constructs. These studies demonstrate the utility of hDPSC/HUVEC-seeded E1001(1K)/ß-TCP scaffolds as a potentially superior clinically relevant therapy to repair craniomaxillofacial bone defects.

12.
Materialia (Oxf) ; 92020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32968719

RESUMEN

Optimal repair of large craniomaxillofacial (CMF) defects caused by trauma or disease requires the development of new, synthetic osteoconductive materials in combination with cell-based therapies, to overcome the limitations of traditionally used bone graft substitutes. In this study, tyrosine-derived polycarbonate, E1001(1k) scaffolds were fabricated to incorporate the osteoinductive coating, Dicalcium phosphate dihydrate (DCPD). The biocompatibility of E1001(1k)-DCPD, E1001(1k)-ßTCP and E1001(1k) scaffolds was compared using in vitro culture with human dental pulp stem cells (hDPSCs). We found that the DCPD coating was converted to carbonated hydroxyapatite over time in in vitro culture in Osteogenic Media, while the ßTCP did not. hDPSCs exhibited slow initial attachment and proliferation on DCPD E1001(1k) scaffolds, but subsequently improved over time in culture, and promoted osteogenic differentiation. To the best of our knowledge, this study highlights for the first time the effects of Osteogenic Media on phase changes of DCPD, and on DCPD scaffold cytocompatibility with hDPSCs. DCPD showed similar hDPSC biocompatibility and osteoconductivity as compared to ßTCP, and osteogenic differentiation of seeded hDPSCs. These studies suggest that E1001(1k)-DCPD scaffolds are a superior tool for craniofacial bone regeneration and provide the foundation for future in vivo testing.

14.
ACS Omega ; 5(18): 10562-10571, 2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32426614

RESUMEN

In recent years, antibacterial surface modification of titanium (Ti) implants has been widely studied in preventing implant-associated infection for dental and orthopedic applications. The purpose of this study was to prepare a composite coating on a porous titanium surface for infection prevention and inducing mineralization, which was initialized by deposition of a poly-l-lysine (PLL)/sodium alginate(SA)/PLL self-assembled coating, followed by dopamine deposition, and finally in situ reduction of silver nanoparticles (AgNPs) by dopamine. The surface zeta potential, SEM, XPS, UV-vis, and water contact angle analyses demonstrate that each coating was successfully prepared after the respective steps and that the average sizes of AgNPs were 20-30 nm. The composite coating maintained Ag+ release for more than 27 days in PBS and induced mineralization when incubated in SBF. The antibacterial results showed that the composite coating inhibited/killed bacteria on the material surface and killed bacteria around them. In addition, although this coating inhibited the initial adhesion of osteoblasts, the mineralized surface greatly enhanced the cytocompatibility. Thus, we concluded that the composite coating could prevent bacterial infections and facilitate mineralization in vivo in the early postoperative period, and then, the mineralized surface could enhance the cytocompatibility.

15.
Biofabrication ; 12(3): 035029, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32428889

RESUMEN

The goal of this study was to use 3D bioprinting technology to create a bioengineered dental construct containing human dental pulp stem cells (hDPSCs). To accomplish this, we first developed a novel bone morphogenetic protein (BMP) peptide-tethering bioink formulation and examined its rheological properties, its printability, and the structural stability of the bioprinted construct. Second, we evaluated the survival and differentiation of hDPSCs in the bioprinted dental construct by measuring cell viability, proliferation, and gene expression, as well as histological and immunofluorescent analyses. Our results showed that the peptide conjugation into the gelatin methacrylate-based bioink formulation was successfully performed. We determined that greater than 50% of the peptides remained in the bioprinted construct after three weeks in vitro cell culture. Human DPSC viability was >90% in the bioprinted constructs immediately after the printing process. Alizarin Red staining showed that the BMP peptide construct group exhibited the highest calcification as compared to the growth medium, osteogenic medium, and non-BMP peptide construct groups. In addition, immunofluorescent and quantitative reverse transcription-polymerase chain reaction analyses showed robust expression of dentin sialophosphoprotein and osteocalcin in the BMP peptide dental constructs. Together, these results strongly suggested that BMP peptide-tethering bioink could accelerate the differentiation of hDPSCs in 3D bioprinted dental constructs.


Asunto(s)
Materiales Biomiméticos/farmacología , Bioimpresión , Proteínas Morfogenéticas Óseas/farmacología , Diferenciación Celular , Pulpa Dental/citología , Osteogénesis , Impresión Tridimensional , Células Madre/citología , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Gelatina/química , Humanos , Hidrogeles/química , Metacrilatos/química , Osteogénesis/efectos de los fármacos , Péptidos/farmacología , Células Madre/efectos de los fármacos , Porcinos , Andamios del Tejido/química
16.
J Oral Maxillofac Surg ; 67(2): 335-47, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19138608

RESUMEN

PURPOSE: Current strategies for jaw reconstruction require multiple operations to replace bone and teeth. To improve on these methods, we investigated simultaneous mandibular and tooth reconstruction, using a Yucatan minipig model. MATERIALS AND METHODS: Tooth and bone constructs were prepared from third molar tooth tissue and iliac-crest bone marrow-derived osteoblasts isolated from, and implanted back into, the same pig as an autologous reconstruction. Implants were harvested after 12 and 20 weeks and evaluated by x-ray, ultrahigh-resolution volume computed tomographic (VCT), histological, and immunohistochemical analyses. RESULTS: Small tooth structures were identified, and consisted of organized dentin, enamel, pulp, and periodontal ligament tissues, surrounded by new bone. No dental tissues formed in implants without tooth-bud cells, and bone regeneration was observed to a limited extent. Immunohistochemical analyses using tooth-specific and bone-specific antibodies confirmed the identity of regenerated tissues. CONCLUSIONS: This pilot study supports the feasibility of tissue-engineering approaches for coordinated autologous tooth and mandible reconstruction, and provides a basis for future improvement of this technique for eventual clinical use in humans.


Asunto(s)
Regeneración Ósea/fisiología , Mandíbula/cirugía , Odontogénesis/fisiología , Osteoblastos/trasplante , Ingeniería de Tejidos/métodos , Andamios del Tejido , Germen Dentario/trasplante , Diente , Amelogenina/biosíntesis , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Cultivadas , Células Epiteliales/trasplante , Estudios de Factibilidad , Masculino , Mandíbula/citología , Células Madre Mesenquimatosas/citología , Modelos Animales , Fosfoproteínas/biosíntesis , Proyectos Piloto , Regeneración/fisiología , Porcinos , Porcinos Enanos , Diente/citología , Diente/metabolismo
17.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 26(4): 776-9, 2009 Aug.
Artículo en Zh | MEDLINE | ID: mdl-19813608

RESUMEN

To study the role of meridians in the formation and development of diseases, a pathological model of obstructed channel was established by injecting polyacrylamide hydrogel. The effects of blocking low hydraulic resistance channel (LHRC), produced by injecting polyacrylamide hydrogel and by injecting normal saline, were compared by examining the change in transmission of interstitial fluid pressure wave. The results showed that there was significant decrease (P < 0.01) in interstitial fluid pressure wave after more than 0.5 ml polyacrylamide hydrogel was injected into the channel, whereas no significant changes were found after normal saline was injected or when the hydrogel was outside the channel. The above findings demonstrate that the low hydraulic resistance channel can be blocked by injecting certain amount of polyacrylamide hydrogel and a pathological model of obstructed channel has been established preliminarily.


Asunto(s)
Resinas Acrílicas/farmacología , Medicina Tradicional China/métodos , Meridianos , Resinas Acrílicas/administración & dosificación , Animales , Masculino , Distribución Aleatoria , Porcinos , Porcinos Enanos
18.
Artículo en Inglés | MEDLINE | ID: mdl-28348178

RESUMEN

The craniofacial complex is composed of fundamental components such as blood vessels and nerves, and also a variety of specialized tissues such as craniofacial bones, cartilages, muscles, ligaments, and the highly specialized and unique organs, the teeth. Together, these structures provide many functions including speech, mastication, and aesthetics of the craniofacial complex. Craniofacial defects not only influence the structure and function of the jaws and face, but may also result in deleterious psychosocial issues, emphasizing the need for rapid and effective, precise, and aesthetic reconstruction of craniofacial tissues. In a broad sense, craniofacial tissue reconstructions share many of the same issues as noncraniofacial tissue reconstructions. Therefore, many concepts and therapies for general tissue engineering can and have been used for craniofacial tissue regeneration. Still, repair of craniofacial defects presents unique challenges, mainly because of their complex and unique 3D geometry.


Asunto(s)
Huesos Faciales/cirugía , Traumatismos Faciales/cirugía , Procedimientos de Cirugía Plástica/métodos , Ingeniería de Tejidos/métodos , Animales , Regeneración Ósea , Trasplante Óseo/métodos , Huesos Faciales/lesiones , Humanos , Procesamiento de Imagen Asistido por Computador/instrumentación , Impresión Tridimensional , Trasplante de Células Madre/métodos
19.
J Tissue Eng Regen Med ; 11(12): 3326-3336, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28066993

RESUMEN

A long-term goal is to bioengineer, fully functional, living teeth for regenerative medicine and dentistry applications. Biologically based replacement teeth would avoid insufficiencies of the currently used dental implants. Using natural tooth development as a guide, a model was fabricated using post-natal porcine dental epithelial (pDE), porcine dental mesenchymal (pDM) progenitor cells, and human umbilical vein endothelial cells (HUVEC) encapsulated within gelatin methacrylate (GelMA) hydrogels. Previous publications have shown that post-natal DE and DM cells seeded onto synthetic scaffolds exhibited mineralized tooth crowns composed of dentin and enamel. However, these tooth structures were small and formed within the pores of the scaffolds. The present study shows that dental cell-encapsulated GelMA constructs can support mineralized dental tissue formation of predictable size and shape. Individually encapsulated pDE or pDM cell GelMA constructs were analysed to identify formulas that supported pDE and pDM cell attachment, spreading, metabolic activity, and neo-vasculature formation with co-seeded endothelial cells (HUVECs). GelMa constructs consisting of pDE-HUVECS in 3% GelMA and pDM-HUVECs within 5% GelMA supported dental cell differentiation and vascular mineralized dental tissue formation in vivo. These studies are the first to demonstrate the use of GelMA hydrogels to support the formation of post-natal dental progenitor cell-derived mineralized and functionally vascularized tissues of specified size and shape. These results introduce a novel three-dimensional biomimetic tooth bud model for eventual bioengineered tooth replacement teeth in humans. Copyright © 2017 John Wiley & Sons, Ltd.


Asunto(s)
Biomimética/métodos , Modelos Biológicos , Germen Dentario/fisiología , Animales , Bioingeniería , Diferenciación Celular/efectos de los fármacos , Módulo de Elasticidad/efectos de los fármacos , Gelatina/farmacología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Metacrilatos/farmacología , Ratas Desnudas , Sus scrofa , Andamios del Tejido/química
20.
J Biomed Mater Res A ; 105(9): 2597-2607, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28544201

RESUMEN

In this study, we investigated the use of three-dimensional electrospun poly(lactic-co-glycolic acid)/poly(ε-caprolactone) (PLGA/PCL) scaffolds seeded and cultured with postnatal dental cells, for improved dental tissue regeneration. Wet-electrospinning combined with ultrasonic treatment was studied as a method to enhance scaffold porosity and to promote cell-cell interactions. We also investigated whether nano-hydroxyapatite (nHA) incorporation could enhance dental cell differentiation. All scaffolds were seeded with human tooth pulp-derived dental mesenchymal (hDM) cells, or a combination of hDM and pig dental epithelial (pDE) cells, cultured for up to 28 days. Developmentally staged samples were assessed using scanning electron microscopy, histological, immunohistochemical, DNA and alkaline phosphatase activity assays, and quantitative-PCR for ameloblastic, odontoblastic, and osteogenic related gene expression. Results showed that electrospun scaffolds exhibited sufficient porosity to support robust cell ingrowth. Additional ultrasonic treatment led to a less homogeneous scaffold porosity, resulting in evident cell clustering and enhanced hDM-pDE cell-cell interactions. Finally, nHA incorporation was found to enhance dental cell differentiation. However, it also resulted in smaller fiber diameter and reduced scaffold porosity, and inhibited cell ingrowth and proliferation. In conclusion, ultrasonically treated wet-electrospun PLGA/PCL scaffolds are a suitable material for dental tissue engineering, and support future in vivo evaluations of this model. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2597-2607, 2017.


Asunto(s)
Diferenciación Celular , Durapatita/química , Ácido Láctico/química , Nanoestructuras/química , Poliésteres/química , Ácido Poliglicólico/química , Ingeniería de Tejidos , Andamios del Tejido/química , Diente/citología , Fosfatasa Alcalina/metabolismo , Animales , Forma de la Célula , ADN/metabolismo , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Porosidad , Sus scrofa , Diente/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA