Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Stem Cells ; 42(2): 116-127, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-37952104

RESUMEN

Human dental pulp stem cells (hDPSCs) play a vital role in the regeneration of the pulp-dentin complex after pulp disease. While the regeneration efficiency relies on the odontoblastic differentiation capacity of hDPSCs, this is difficult to regulate within the pulp cavity. Although nicotinamide riboside (NR) has been found to promote tissue regeneration, its specific role in pulp-dentin complex regeneration is not fully understood. Here, we aimed to explore the role of NR in the odontoblastic differentiation of hDPSCs and its underlying molecular mechanism. It was found that NR enhanced the viability and retarded senescence in hDPSCs with higher NAD+/NADH levels. In contrast to the sustained action of NR, the multi-directional differentiation of hDPSCs was enhanced after NR pre-treatment. Moreover, in an ectopic pulp regeneration assay in nude mice, transplantation of hDPSCs pretreated with NR promoted the formation of a dentin-like structure surrounded by cells positively expressing DMP-1 and DSPP. RNA-Seq demonstrated inhibition of the HIF-1 signaling pathway in hDPSCs pretreated with NR. The number of HIF-1α-positive cells was significantly decreased in hDPSCs pretreated by NR in vivo. Similarly, NR significantly downregulated the expression of HIF-1α in vitro. The findings suggested that NR could potentially regulate hDPSC odontoblastic differentiation and promote the development of innovative strategies for dental pulp repair.


Asunto(s)
Pulpa Dental , Niacinamida , Odontoblastos , Compuestos de Piridinio , Animales , Humanos , Ratones , Diferenciación Celular , Células Cultivadas , Ratones Desnudos , Niacinamida/análogos & derivados , Regeneración , Transducción de Señal , Células Madre/metabolismo
2.
BMC Oral Health ; 22(1): 523, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36424563

RESUMEN

BACKGROUND: Hereditary gingival fibromatosis (HGF) is characterized by sub-epithelial fibromatosis of keratinized gingiva resulting in a fibrotic enlargement of keratinized gingiva. The treatment choice is gingivectomy, which can be performed with an internal or external bevel incision conventionally. However, both techniques can hardly resume the natural status of gingiva, and have a certain recurrence rate, especially in the cases which have limited width of attached gingiva. CASE DESCRIPTION: Two cases of HGF with the chief complaint of difficulty in mastication, pronunciation, and poor esthetics were presented. After the initial periodontal therapy, a novel gingivoplasty modified with a crevicular incision was applied. A full thickness flap above the mucogingival junction and a split flap below the junction were raised. Then, fibrotic connective tissue was completely eliminated and keratinized gingival epithelium was preserved. The fibrotic alveolar bone was shaped by handpiece and bur. Finally, the flap was apically repositioned and sutured. Twelve months after surgery, the gingiva recovered with normal color, contour and consistency. CONCLUSIONS: Compared to traditional gingivectomy, modified gingivoplasty which focuses on eliminating pathological fibrotic connective tissue can completely resume the natural appearance of gingiva and demonstrate no tendency of recurrence.


Asunto(s)
Fibromatosis Gingival , Gingivoplastia , Humanos , Gingivoplastia/métodos , Fibromatosis Gingival/genética , Fibromatosis Gingival/cirugía , Fibromatosis Gingival/patología , Gingivectomía/métodos , Encía/patología
3.
Mater Today Bio ; 26: 101102, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38883420

RESUMEN

Regenerative endodontic therapy is a promising approach to restore the vitality of necrotic teeth, however, pulp regeneration in mature permanent teeth remains a substantial challenge due to insufficient developmental signals. The dentin is embryologically and histologically similar to the pulp, which contains a cocktail of pulp-specific structural proteins and growth factors, thus we proposed an optimizing strategy to obtain dentin matrix extracted proteins (DMEP) and engineered a DMEP functionalized double network hydrogel, whose physicochemical property was tunable by adjusting polymer concentrations to synchronize with regenerated tissues. In vitro models showed that the biomimetic hydrogel with sustained release of DMEP provided a beneficial microenvironment for the encapsulation, propagation and migration of human dental pulp stem cells (hDPSCs). The odontogenic and angiogenic differentiation of hDPSCs were enhanced as well. To elicit the mechanism hidden in the microenvironment to guide cell fate, RNA sequencing was performed and 109 differential expression of genes were identified, the majority of which enriched in cell metabolism, cell differentiation and intercellular communications. The involvement of ERK, p38 and JNK MAPK signaling pathways in the process was confirmed. Of note, in vivo models showed that the injectable and in situ photo-crosslinkable hydrogel was user-friendly for root canal systems and was capable of inducing the regeneration of highly organized and vascularized pulp-like tissues in root segments that subcutaneously implanted into nude mice. Taken together, this study reported a facile and efficient way to fabricate a cell delivery hydrogel with pulp-specific developmental cues, which exhibited promising application and translation potential in future regenerative endodontic fields.

4.
Free Radic Biol Med ; 208: 334-347, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37619958

RESUMEN

Apical periodontitis (AP) is an infectious disease that causes periapical tissue inflammation and bone destruction. Ferroptosis, a novel type of regulated cell death, is closely associated with inflammatory diseases and the regulation of bone homeostasis. However, the exact involvement of ferroptosis in the bone loss of AP is not fully understood. In this study, human periapical tissues were collected, and a mouse model was established to investigate the role of ferroptosis in AP. Colocalization staining revealed that ferroptosis in macrophages contributes to the inflammatory bone loss associated with AP. A cell model was constructed using RAW 264.7 cells stimulated with LPS to further explore the mechanism underlying ferroptosis in macrophages upon inflammatory conditions, which exhibited ferroptotic characteristics. Moreover, downregulation of NRF2 was observed in ferroptotic macrophages, while overexpression of NRF2 upregulated the level of FSP1, leading to a reduction in reactive oxygen species (ROS) in macrophages. Additionally, ferroptotic macrophages released TNF-α, which activated the p38 MAPK signaling pathway and further increased ROS accumulation in macrophages. In vitro co-culture experiments demonstrated that the osteogenic ability of mouse bone marrow stromal cells (BMSCs) was suppressed with the stimulation of TNF-α from ferroptotic macrophages. These findings suggest that the TNF-α autocrine-paracrine loop in ferroptotic macrophages can inhibit osteogenesis in BMSCs through the NRF2/FSP1/ROS signaling pathway, leading to bone loss in AP. This study highlights the potential therapeutic value of targeting ferroptosis in the treatment of inflammatory bone diseases.


Asunto(s)
Ferroptosis , Periodontitis Periapical , Animales , Humanos , Ratones , Ferroptosis/genética , Macrófagos/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Periodontitis Periapical/genética , Periodontitis Periapical/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA