Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Biomolecules ; 14(9)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39334895

RESUMEN

Conventional pulp capping materials have limited anti-inflammatory capacity. It is necessary to develop more effective pulp capping material for the treatment of inflamed pulps. Tannic acid (TA) is a natural, water-soluble polyphenol with antimicrobial and anti-inflammatory properties. This study aimed to investigate the effects of a tannin-containing hydroxypropyl chitin hydrogel (HPCH/TA hydrogel) as an innovative pulp capping material. The physicochemical properties of the composite hydrogels were characterized. The effects of HPCH/TA hydrogel as a pulp capping material were evaluated in vitro and in vivo. The underlying mechanism of the anti-inflammatory effects of HPCH/TA hydrogel was explored. The HPCH/TA hydrogel demonstrated favorable temperature sensitivity, injectability, and antibacterial properties. In vitro, the HPCH/TA hydrogel effectively promoted the proliferation of human dental pulp cells and inhibited interleukin-1ß, interleukin-6, and tumor necrosis factor-α expression, possibly by suppressing the nuclear factor kappa-B pathway. In vivo, on the fourth day after capping, the HPCH/TA hydrogel group showed lower inflammatory scores compared to the control and iRoot BP Plus (commercial pulp capping material) group. By the sixth week, complete reparative dentin formation was observed in the HPCH/TA hydrogel group, with no difference in thickness compared to the iRoot BP Plus group. Collectively, the HPCH/TA hydrogel holds promise as a bioactive pulp capping material for promoting the repair of inflamed pulp in vital pulp therapy.


Asunto(s)
Quitina , Pulpa Dental , Hidrogeles , Taninos , Taninos/química , Taninos/farmacología , Hidrogeles/química , Pulpa Dental/efectos de los fármacos , Pulpa Dental/metabolismo , Quitina/química , Quitina/farmacología , Quitina/análogos & derivados , Humanos , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/química , Antiinflamatorios/administración & dosificación , Recubrimiento de la Pulpa Dental , Proliferación Celular/efectos de los fármacos , Materiales de Recubrimiento Pulpar y Pulpectomía/química , Materiales de Recubrimiento Pulpar y Pulpectomía/farmacología , Ratas , Masculino
2.
J Mol Histol ; 54(6): 665-673, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37787911

RESUMEN

Histone lactylation on its lysine (K) residues has been reported to have indispensable roles in lung fibrosis, embryogenesis, neural development, inflammation, and tumors. However, little is known about the lactylation activity towards histone lysine residue during tooth development. We investigated the dynamic patterns of lactate-derived histone lysine lactylation (Kla) using a pan-Kla antibody during murine tooth development, including lower first molar and lower incisor. The results showed that pan-Kla exhibited temporo-spatial patterns in both dental epithelium and mesenchyme cells during development. Notably, pan-Kla was identified in primary enamel knot (PEK), stratum intermedium (SI), stellate reticulum (SR), dental follicle cells, odontoblasts, ameloblasts, proliferating cells in dental mesenchyme, as well as osteoblasts around the tooth germ. More importantly, pan-Kla was also identified to be co-localized with neurofilament during tooth development, suggesting histone lysine lactylation may be involved in neural invasion during tooth development. These findings suggest that histone lysine lactylation may play important roles in regulating tooth development.


Asunto(s)
Histonas , Lisina , Ratones , Animales , Odontogénesis , Germen Dentario , Ameloblastos
3.
Front Physiol ; 13: 923185, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784864

RESUMEN

Dentinogenesis is a key process in tooth formation and is regulated by a series of pre- and post-transcriptional regulations. N6-methyl-adenosine (m6A), which is the most prevalent internal chemical modification that can be removed by the RNA demethylase AlkB homolog H5 (ALKBH5), has recently been reported to be involved in several biological processes. However, the exact function of ALKBH5-mediated m6A modification in tooth development remains unclear. Here, we showed that Alkbh5 was expressed in pre-odontoblasts, polarizing odontoblasts, and secretory odontoblasts. Alkbh5 overexpression in the mouse dental papilla cell line mDPC6T promoted odontoblastic differentiation. Conditional knockout of Alkbh5 in Dmp1-expressing odontoblasts led to a decrease in number of odontoblasts and increased pre-dentin formation. Mechanistically, RNA sequencing and m6A sequencing of Alkbh5-overexpressing mDPC6T cells revealed that Alkbh5 promoted odontoblast differentiation by prolonging the half-life of Runx2 transcripts in an m6A-dependent manner and by activating the phosphatidylinositol 3-kinase/protein kinase B pathway. Notably, the loss of Alkbh5 expression in odontoblasts impaired tertiary dentin formation in vivo. These results suggested that the RNA demethylase ALKBH5 plays a role in dentinogenesis.

4.
PLoS One ; 5(11): e14021, 2010 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-21151641

RESUMEN

In this study, we established a comprehensive genetic map with a large number of progeny from a three-generation hybrid Populus intercross, and phenotyped the lignin content, S/G ratio and 28 cell wall subcomponents both in stems and roots for the mapping individuals. Phenotypic analysis revealed that lignin content and syringyl-to-guaiacyl (S/G) ratio using pyrolysis molecular beam mass spectroscopy (pyMBMS) varied among mapping individuals. Phenotypic analysis revealed that stem lignin content is significantly higher than that in root and the quantified traits can be classified into four distinct groups, with strong correlations observed among components within organs. Altogether, 179 coordinating QTLs were detected, and they were co-localized into 49 genetic loci, 27 of which appear to be pleiotropic. Many of the detected genetic loci were detected differentially in stem and root. This is the first report of separate genetic loci controlling cell wall phenotypes above and below ground. These results suggest that it may be possible to modify lignin content and composition via breed and/or engineer as a means of simultaneously improving Populus for cellulosic ethanol production and carbon sequestration.


Asunto(s)
Sitios Genéticos/genética , Lignina/metabolismo , Raíces de Plantas/genética , Tallos de la Planta/genética , Populus/genética , Algoritmos , Análisis de Varianza , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Genes de Plantas/genética , Genotipo , Modelos Genéticos , Fenotipo , Raíces de Plantas/metabolismo , Tallos de la Planta/metabolismo , Populus/metabolismo , Análisis de Componente Principal , Sitios de Carácter Cuantitativo/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA