Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Exp Cell Res ; 346(1): 119-29, 2016 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-27237095

RESUMEN

Recently, stem cells derived from the'inflamed' periodontal ligament (PDL) tissue of periodontally diseased teeth (I-PDLSCs) have been increasingly suggested as a more readily accessible source of cells for regenerative therapies than those derived from healthy PDL tissue (H-PDLSCs). However, substantial evidence indicates that I-PDLSCs exhibit impaired functionalities compared with H-PDLSCs. In this study, patient-matched I-PDLSCs and H-PDLSCs were co-cultured at various ratios. Cellular materials derived from these cultures were investigated regarding their osteogenic potential in vitro and capacity to form new bone following in vivo transplantation. While patient-matched I-PDLSCs and H-PDLSCs could co-exist in co-culture systems, the proportion of I-PDLSCs tended to increase during in vitro incubation. Compared with H-PDLSC monoculture, the presence of I-PDLSCs in the co-cultures appeared to enhance the overall cell proliferation. Although not completely rescued, the osteogenic and regenerative potentials of the cellular materials generated by co-cultured I-PDLSCs and H-PDLSCs were significantly improved compared with those derived from I-PDLSC monocultures. Notably, cells in co-cultures containing either 50% I-PDLSCs plus 50% H-PDLSCs or 25% I-PDLSCs plus 75% H-PDLSCs expressed osteogenesis-related proteins and genes at levels similar to those expressed in H-PDLSC monocultures (P>0.05). Irrespective of the percentage of I-PDLSCs, robust cellular materials were obtained from co-cultures with 50% or more H-PDLSCs, which exhibited equivalent potential to form new bone in vivo compared with sheets generated by H-PDLSC monocultures. These data suggest that the co-culture of I-PDLSCs with patient-matched H-PDLSCs is a practical and effective method for increasing the overall osteogenic and regenerative potentials of resultant cellular materials.


Asunto(s)
Técnicas de Cocultivo/métodos , Inflamación/patología , Ligamento Periodontal/patología , Células Madre/patología , Animales , Regeneración Ósea , Proliferación Celular , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Osteogénesis
2.
ACS Biomater Sci Eng ; 10(6): 4059-4072, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38748565

RESUMEN

The silicon nitride (Si3N4) coating exhibits promising potential in oral applications due to its excellent osteogenic and antibacterial properties. However, a comprehensive investigation of Si3N4 coatings in the context of dental implants is still lacking, especially regarding their corrosion resistance and in vivo performance. In this study, Si3N4 coatings were prepared on a titanium surface using the nonequilibrium magnetron sputtering method. A systematic comparison among the titanium group (Ti), Si3N4 coating group (Si3N4-Ti), and sandblasted and acid-etched-treated titanium group (SLA-Ti) has been conducted in vitro and in vivo. The results showed that the Si3N4-Ti group had the best corrosion resistance and antibacterial properties, which were mainly attributed to the dense structure and chemical activity of Si-O and Si-N bonds on the surface. Furthermore, the Si3N4-Ti group exhibited superior cellular responses in vitro and new bone regeneration and osseointegration in vivo, respectively. In this sense, silicon nitride coating shows promising prospects in the field of dental implantology.


Asunto(s)
Antibacterianos , Materiales Biocompatibles Revestidos , Implantes Dentales , Osteogénesis , Compuestos de Silicona , Titanio , Titanio/química , Titanio/farmacología , Compuestos de Silicona/química , Compuestos de Silicona/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/administración & dosificación , Osteogénesis/efectos de los fármacos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Animales , Propiedades de Superficie , Oseointegración/efectos de los fármacos , Ratones , Ensayo de Materiales , Corrosión
3.
J Colloid Interface Sci ; 611: 105-117, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34933189

RESUMEN

Despite great efforts have been made on epoxy resins modification, development of additives that can be used to efficiently and universally modify epoxy composites remains a challenging task. Herein, graphene oxide (GO) sheets were covalently linked with hyperbranched epoxy resin (HBPEE-epoxy) to form HBPEE-epoxy functionalized GO (HPE-GO), which was then incorporated into epoxy resin (EP) matrix to achieve efficient and all-purpose enhancement of the properties of EPs. Compared with unmodified GO sheets, the functionalized HPE-GO sheets were better dispersed and exhibited better interfacial compatibility with the epoxy matrix, and consequently, the mechanical and thermal properties of HPE-GO/EP composites improved significantly compared to unmodified GO/EP composites. The tensile strength, flexural strength, impact strength, and fracture toughness (KIC) of EP composites containing 0.5 wt% HPE-GO increased by 65.0%, 36.2%, 259.1%, and 178.9%, respectively, compared with those for the neat EP. The storage modulus (E'), glass transition temperature (Tg), and thermal stability (T5%) also showed modest improvements. Furthermore, the HPE-GO/EP composites exhibited optimal thermal conductivities and thermal expansion properties, while maintaining higher volume resistivities compared with GO/EP composites. The results of this study support that HPE-GO is a promising, all-purpose modifier for EPs.


Asunto(s)
Resinas Epoxi , Grafito , Temperatura , Resistencia a la Tracción
4.
Medicine (Baltimore) ; 101(34): e30215, 2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36042641

RESUMEN

Microplastics have the characteristics of small size, high specific area, strong ability to adsorb pollutants, and difficult to degrade. They have become a major global environmental problem that humans urgently need to address. A balanced microecosystem is essential to human health. Animal studies have shown that long-term exposure to microplastics can change the characteristics of the microbiota in organisms, leading to respiratory, digestive, immune, and other system diseases. However, the current research on microplastics is still dominated by animal experiments, and the impact of microplastics on human health is still in its infancy, so relevant research is urgently needed. Twenty participants with high exposure to microplastics will come from a plastic factory in Chengdu, China. We will perform 16S rDNA sequencing on participants' nasal secretions, and stool samples. Additionally, we will perform 8700 LDIR laser infrared imaging of environmental soil and air filter membrane samples. For comparison, we will also collect samples from 20 volunteers from an area with good environmental quality in Chengdu. To find out the potential predictors and to access the difference between the groups, statistical analysis will be performed in the end. The study will be the first observational cross-sectional study focusing on the effects of microplastics on nasal and gut microbiota of high-exposure population. The study is expected to provide reliable evidence to fill the gaps in the impact of microplastics on human health.


Asunto(s)
Contaminantes Ambientales , Microbioma Gastrointestinal , Contaminantes Químicos del Agua , Animales , Estudios Transversales , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Humanos , Microplásticos , Estudios Observacionales como Asunto , Plásticos/análisis , Plásticos/farmacología , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/farmacología
5.
Front Public Health ; 10: 1005535, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36388272

RESUMEN

Background: Microplastic has become a growing environmental problem. A balanced microbial environment is an important factor in human health. This study is the first observational cross-sectional study focusing on the effects of microplastics on the nasal and gut microbiota in a highly exposed population. Methods: We recruited 20 subjects from a Plastic Factory (microplastics high-exposure area) and the other 20 from Huanhuaxi Park (microplastics low-exposure area) in Chengdu, China. We performed the microplastic analysis of soil, air, and intestinal secretions by laser infrared imaging, and microbiological analysis of nasal and intestinal secretions by 16S rDNA sequencing. Results: The result shows that the detected points of microplastics in the environment of the high-exposure area were significantly more than in the low-exposure area. Polyurethane was the main microplastic component detected. The microplastic content of intestinal secretions in the high-exposure group was significantly higher than in the low-exposure group. Specifically, the contents of polyurethane, silicone resin, ethylene-vinyl acetate copolymer, and polyethylene in the high-exposure group were significantly higher than in the low-exposure group. Moreover, high exposure may increase the abundance of nasal microbiotas, which are positively associated with respiratory tract diseases, such as Klebsiella and Helicobacter, and reduce the abundance of those beneficial ones, such as Bacteroides. Simultaneously, it may increase the abundance of intestinal microbiotas, which are positively associated with digestive tract diseases, such as Bifidobacterium, Streptococcus, and Sphingomonas, and reduce the abundance of intestinal microbiotas, which are beneficial for health, such as Ruminococcus Torquesgroup, Dorea, Fusobacterium, and Coprococcus. A combined analysis revealed that high exposure to microplastics may not only lead to alterations in dominant intestinal and nasal microbiotas but also change the symbiotic relationship between intestinal and nasal microbiotas. Conclusion: The results innovatively revealed how microplastics can affect the intestinal and nasal microecosystems. Clinical trial registration: ChiCTR2100049480 on August 2, 2021.


Asunto(s)
Microbioma Gastrointestinal , Microplásticos , Humanos , Plásticos/farmacología , Poliuretanos/farmacología , Estudios Transversales
6.
Stem Cell Res Ther ; 7: 33, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26895633

RESUMEN

BACKGROUND: Periodontitis, which progressively destroys tooth-supporting structures, is one of the most widespread infectious diseases and the leading cause of tooth loss in adults. Evidence from preclinical trials and small-scale pilot clinical studies indicates that stem cells derived from periodontal ligament tissues are a promising therapy for the regeneration of lost/damaged periodontal tissue. This study assessed the safety and feasibility of using autologous periodontal ligament stem cells (PDLSCs) as an adjuvant to grafting materials in guided tissue regeneration (GTR) to treat periodontal intrabony defects. Our data provide primary clinical evidence for the efficacy of cell transplantation in regenerative dentistry. METHODS: We conducted a single-center, randomized trial that used autologous PDLSCs in combination with bovine-derived bone mineral materials to treat periodontal intrabony defects. Enrolled patients were randomly assigned to either the Cell group (treatment with GTR and PDLSC sheets in combination with Bio-oss(®)) or the Control group (treatment with GTR and Bio-oss(®) without stem cells). During a 12-month follow-up study, we evaluated the frequency and extent of adverse events. For the assessment of treatment efficacy, the primary outcome was based on the magnitude of alveolar bone regeneration following the surgical procedure. RESULTS: A total of 30 periodontitis patients aged 18 to 65 years (48 testing teeth with periodontal intrabony defects) who satisfied our inclusion and exclusion criteria were enrolled in the study and randomly assigned to the Cell group or the Control group. A total of 21 teeth were treated in the Control group and 20 teeth were treated in the Cell group. All patients received surgery and a clinical evaluation. No clinical safety problems that could be attributed to the investigational PDLSCs were identified. Each group showed a significant increase in the alveolar bone height (decrease in the bone-defect depth) over time (p < 0.001). However, no statistically significant differences were detected between the Cell group and the Control group (p > 0.05). CONCLUSIONS: This study demonstrates that using autologous PDLSCs to treat periodontal intrabony defects is safe and does not produce significant adverse effects. The efficacy of cell-based periodontal therapy requires further validation by multicenter, randomized controlled studies with an increased sample size. TRIAL REGISTRATION: NCT01357785 Date registered: 18 May 2011.


Asunto(s)
Enfermedades Maxilomandibulares/terapia , Periodontitis/terapia , Trasplante de Células Madre , Alveolo Dental/patología , Adolescente , Adulto , Células Madre Adultas/fisiología , Anciano , Regeneración Ósea , Células Cultivadas , Femenino , Humanos , Enfermedades Maxilomandibulares/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Ligamento Periodontal/patología , Periodontitis/diagnóstico por imagen , Radiografía , Medicina Regenerativa , Alveolo Dental/diagnóstico por imagen , Trasplante Autólogo , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA