Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Small ; 17(33): e2102051, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34309205

RESUMEN

Airborne particulate matters (PM) pose serious health threats to the population, and efficient filtration is needed for indoor and vehicular environments. However, there is an intrinsic conflict between filtration efficiency, air resistance, and service life. In this study, a two-stage electrostatically assisted air (EAA) filtration device is designed and the efficiency-air resistance-filter life envelope is significantly improved by a thin coating of polydopamine (PDA) on the polyethylene terephthalate (PET) coarse filter by in situ dopamine polymerization. The 8 mm thick EAA PDA-140@PET filter has a high filtration efficiency of 99.48% for 0.3 µm particles, low air resistance of 9.5 Pa at a filtration velocity of 0.4 m s-1 , and steady performance up to 30 d. Compared with the bare PET filter, the penetration rate for 0.3 µm particles is lowered by 20×. The coated PDA is of submicron thickness, 10-3  × the gap distance between filter fibers, so low air resistance could be maintained. The filter shows steadily high filtration efficiency and an acceptable increase of air resistance and holds nearly as many particles as its own weight in a 30 day long-term test. The working mechanism of the EAA coarse filter is investigated, and the materials design criteria are proposed.


Asunto(s)
Material Particulado , Tereftalatos Polietilenos , Filtración , Indoles , Polímeros
2.
Bioresour Technol ; 193: 274-80, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26141288

RESUMEN

The hypothesis that extracellular polymeric substances (EPS) affect the formation of biofilms for subsequent enhanced biodegradation of polycyclic aromatic hydrocarbons was tested. Controlled formation of biofilms on humin particles and biodegradation of phenanthrene and pyrene were performed with bacteria and EPS-extracted bacteria of Micrococcus sp. PHE9 and Mycobacterium sp. NJS-P. Bacteria without EPS extraction developed biofilms on humin, in contrast the EPS-extracted bacteria could not attach to humin particles. In the subsequent biodegradation of phenanthrene and pyrene, the biodegradation rates by biofilms were significantly higher than those of EPS-extracted bacteria. Although, both the biofilms and EPS-extracted bacteria showed increases in EPS contents, only the EPS contents in biofilms displayed significant correlations with the biodegradation efficiencies of phenanthrene and pyrene. It is proposed that the bacterial-produced EPS was a key factor to mediate bacterial attachment to other surfaces and develop biofilms, thereby increasing the bioavailability of poorly soluble PAH for enhanced biodegradation.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Hidrocarburos Policíclicos Aromáticos/metabolismo , Polímeros/metabolismo , Biodegradación Ambiental , Disponibilidad Biológica , Sustancias Húmicas/microbiología , Micrococcus/crecimiento & desarrollo , Micrococcus/metabolismo , Mycobacterium/crecimiento & desarrollo , Mycobacterium/metabolismo , Fenantrenos/metabolismo , Pirenos/metabolismo
3.
Bioresour Technol ; 123: 92-7, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22940304

RESUMEN

The objective of the study was to test the hypothesis that the attachment of polycyclic aromatic hydrocarbons (PAHs)-degrading bacteria can promote desorption of PAHs from humin, thereby increasing their bioavailability. Biodegradation of humin-bound phenanthrene (PHE) - a model compound for PAHs - was investigated using two PHE-degrading bacteria, Sphingobium sp. PHE3 and Micrococcus sp. PHE9, respectively. Sorption data of PHE to humin fitted well into the modified Freundlich equation. Further, a new sorption band appeared at 1262cm(-1), demonstrating intermolecular interactions between PHE and humin. Interestingly, approximately 65.3% of humin-bound PHE was degraded by both strains, although only about 17.8% of PHE could be desorbed from humin by Tenax extraction. Furthermore, both strains grew well in mineral medium and also attached to humin surfaces for substrate uptake. It is proposed that the attached bacteria could possibly consume PHE on the humin via interactions between bacterial surfaces and humin, thereby overcoming the low PHE bioavailability and resulting in enhanced degradation.


Asunto(s)
Bacterias/metabolismo , Sustancias Húmicas/análisis , Fenantrenos/metabolismo , Adsorción , Bacterias/citología , Biodegradación Ambiental , Células Inmovilizadas/metabolismo , Medios de Cultivo , Cinética , Dinámicas no Lineales , Polímeros/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA