Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Adv Sci (Weinh) ; 11(1): e2304480, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37939288

RESUMEN

A major pathological basis for low back pain is intervertebral disk degeneration, which is primarily caused by the degeneration of nucleus pulposus cells due to imbalances in extracellular matrix (ECM) anabolism and catabolism. The phenotype of macrophages in the local immune microenvironment greatly influences the balance of ECM metabolism. Therefore, the control over the macrophage phenotype of the ECM is promising to repair intervertebral disk degeneration. Herein, the preparation of an injectable nanocomposite hydrogel is reported by embedding epigallocatechin-3-gallate-coated hydroxyapatite nanorods in O-carboxymethyl chitosan cross-linked with aldehyde hyaluronic acid that is capable of modulating the phenotype of macrophages. The bioactive components play a primary role in repairing the nucleus pulposus, where the hydroxyapatite nanorods can promote anabolism in the ECM through the nucleopulpogenic differentiation of mesenchymal stem cells. In addition, epigallocatechin-3-gallate can decrease catabolism in the ECM in nucleus pulposus by inducing M2 macrophage polarization, which exists in normal intervertebral disks and can alleviate degeneration. The nanocomposite hydrogel system shows promise for the minimally invasive and effective treatment of intervertebral disk degeneration by controlling anabolism and catabolism in the ECM and inhibiting the IL17 signaling pathway (M1-related pathway) in vitro and in vivo.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Humanos , Degeneración del Disco Intervertebral/metabolismo , Hidrogeles/farmacología , Nanogeles , Disco Intervertebral/metabolismo , Hidroxiapatitas
2.
ACS Appl Mater Interfaces ; 16(40): 53541-53554, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39344595

RESUMEN

Hydrogels have garnered tremendous attention for their applications in the repair of intervertebral disk (IVD) degeneration and postoperative IVD defects. However, it is still challenging to develop a hydrogel fulfilling the requirements for high mechanical properties, adhesive capability, biocompatibility, antibacterial properties, and anti-inflammatory performance. Herein, we report a multifunctional double-network (DN) hydrogel composed of physically cross-linked carboxymethyl chitosan (CMCS) and tannic acid (TA) networks as well as chemically cross-linked acrylamide (AM) networks, which integrates the properties of high strength, adhesion, biocompatibility, antimicrobial activity, and anti-inflammation for the repair of postoperative IVD defects. The treatment with CMCS/TA/PAM DN hydrogels can significantly decrease the levels of inflammatory cytokines and degeneration-related factors and upregulated collagen type II alpha 1. In addition, the hydrogels can effectively seal the annulus fibrosus defect, prevent nucleus pulposus degeneration, retain IVD height, and restore the biomechanical properties of the disc to some extent. This polyphenol-mediated DN hydrogel is promising for sealing IVD defects and preventing herniation after lumbar discectomy.


Asunto(s)
Antiinflamatorios , Quitosano , Hidrogeles , Degeneración del Disco Intervertebral , Hidrogeles/química , Hidrogeles/farmacología , Animales , Quitosano/química , Quitosano/análogos & derivados , Quitosano/farmacología , Degeneración del Disco Intervertebral/cirugía , Degeneración del Disco Intervertebral/tratamiento farmacológico , Degeneración del Disco Intervertebral/patología , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Taninos/química , Taninos/farmacología , Taninos/uso terapéutico , Polifenoles/química , Polifenoles/farmacología , Disco Intervertebral/cirugía , Disco Intervertebral/efectos de los fármacos , Disco Intervertebral/patología , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Masculino
3.
Materials (Basel) ; 15(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36234325

RESUMEN

Research on regulation of the immune microenvironment based on bioactive materials is important to osteogenic regeneration. Hydroxyapatite (HAP) is believed to be a promising scaffold material for dental and orthopedic implantation due to its ideal biocompatibility and high osteoconductivity. However, any severe inflammation response can lead to loosening and fall of implantation, which cause implant failures in the clinic. Morphology modification has been widely studied to regulate the host immune environment and to further promote bone regeneration. Here, we report the preparation of nHAPs, which have uniform rod-like shape and different size (200 nm and 400 nm in length). The morphology, biocompatibility, and anti-inflammatory properties were evaluated. The results showed that the 400 nm nHAPs exhibited excellent biocompatibility and osteoimmunomodulation, which can not only induce M2-phenotype macrophages (M2) polarization to decrease the production of inflammatory cytokines, but also promote the production of osteogenic factor. The reported 400 nm nHAPs are promising for osteoimmunomodulation in bone regeneration, which is beneficial for clinical application of bone defects.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA