Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Anal Bioanal Chem ; 406(22): 5359-67, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24916075

RESUMEN

A thermoresponsive imprinted monolith with the ability of molecular recognition for ketoprofen was prepared for the first time. The smart monolith was synthesized in a stainless steel column using acrylamide (AAm) and 2-acrylamide-2-methyl propanesulfonic acid (AMPS) as functional monomers, which can form interpolymer complexation to restrict access of the analyte to the imprinted networks at low temperatures. To avoid a high back pressure of the column derived from neat dimethyl sulfoxide (DMSO) as a porogenic solvent that is needed to solve polar AMPS, an ionic liquid, [BMIM]BF4, was introduced into the pre-polymerization mixture. The molecular recognition ability towards ketoprofen of the resulting thermoresponsive molecularly imprinted polymer (MIP) monolith displayed significant dependence on temperature compared with a non-imprinted column (NIP), and the greatest imprinting factor was achieved at the transition temperature of 35 °C (above 10). Furthermore, the number of binding sites of the smart MIP monolith at 35 °C was about 76 times as large as that at 25 °C. In addition, Freundlich analyses indicated that the thermoresponsive MIP monolith had homogeneous affinity sites at both 25 and 35 °C with heterogeneity index 0.9251 and 0.9851, respectively.


Asunto(s)
Acrilamida/análisis , Líquidos Iónicos/química , Cetoprofeno/química , Impresión Molecular , Ácidos Sulfónicos/análisis , Acrilamida/química , Adsorción , Animales , Química Farmacéutica , Dimetilsulfóxido/química , Contaminación de Alimentos , Gases , Concentración de Iones de Hidrógeno , Mercurio , Leche/química , Polímeros/química , Porosidad , Presión , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier , Ácidos Sulfónicos/química , Temperatura
2.
Drug Dev Ind Pharm ; 37(7): 868-74, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21231900

RESUMEN

Particulate systems that could deliver drug specifically to duodenum have not yet been reported. The aim of this study was to develop a novel duodenum-specific drug delivery system based on thiolated chitosan and hydroxypropyl methylcellulose acetate maleate (HPMCAM) for the duodenal ulcer application. Berberine hydrochloride was used as model drug. Thiolated chitosan was synthesized and further used for the preparation of mucoadhesive microspheres. HPMCAM, which is insoluble below pH 3.0 was synthesized and used for the coating of thiolated chitosan microspheres (TCM). The resulting thiolated chitosan immobilized on chitosan was 268.21 ± 18 µmol/g. In vitro mucoadhesion study showed that the mucoadhesion property of TCM was better than that of chitosan microspheres. Morphological observation showed that the HPMCAM coating would maintain its integrity in simulated gastric fluid (SGF) for 2 h and dissolved quickly in simulated pathological duodenal fluid (SPDF; pH 3.3). In vitro drug release studies showed that only 4.75% of the drug was released in SGF for 2 h, while nearly 90% of the drug was released within 6 h after transferring into SPDF.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Duodeno/efectos de los fármacos , Adhesividad , Berberina/administración & dosificación , Quitosano , Úlcera Duodenal/tratamiento farmacológico , Duodeno/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Derivados de la Hipromelosa , Técnicas In Vitro , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/metabolismo , Metilcelulosa/análogos & derivados , Microscopía Electrónica de Rastreo , Microesferas , Comprimidos Recubiertos
3.
Int J Nanomedicine ; 12: 5255-5269, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28769562

RESUMEN

Previous studies have shown that mithramycin A (MIT) is a promising candidate for the treatment of pancreatic carcinoma through inhibiting transcription factor Sp1. However, systemic toxicities may limit its clinical application. Here, we report a rationally designed formulation of MIT-loaded nanoparticles (MIT-NPs) with a small size and sustained release for improved passive targeting and enhanced therapeutic efficacy. Nearly spherical MIT-NPs with a mean particle size of 25.0±4.6 nm were prepared by encapsulating MIT into methoxy poly(ethylene glycol)-block-poly(d,l-lactic-co-glycolic acid) (mPEG-PLGA) nanoparticles (NPs) with drug loading of 2.11%±0.51%. The in vitro release of the MIT-NPs lasted for >48 h with a sustained-release pattern. The cytotoxicity of MIT-NPs to human pancreatic cancer BxPC-3 and MIA Paca-2 cells was comparable to that of free MIT. Determined by flow cytometry and confocal microscopy, the NPs internalized into the cells quickly and efficiently, reaching the peak level at 1-2 h. In vivo fluorescence imaging showed that the prepared NPs were gradually accumulated in BxPC-3 and MIA Paca-2 xenografts and retained for 168 h. The fluorescence intensity in both BxPC-3 and MIA Paca-2 tumors was much stronger than that of various tested organs. Therapeutic efficacy was evaluated with the poorly permeable BxPC-3 pancreatic carcinoma xenograft model. At a well-tolerated dose of 2 mg/kg, MIT-NPs suppressed BxPC-3 tumor growth by 96%. Compared at an equivalent dose, MIT-NPs exerted significantly higher therapeutic effect than free MIT (86% versus 51%, P<0.01). Moreover, the treatment of MIT and MIT-NPs reduced the expression level of oncogene c-Myc regulated by Sp1, and notably, both of them decreased the protein level of CD47. In summary, the novel formulation of MIT-NPs shows highly therapeutic efficacy against pancreatic carcinoma xenograft. In addition, MIT-NPs can downregulate CD47 expression, implying that it might play a positive role in cancer immunotherapy.


Asunto(s)
Nanopartículas/administración & dosificación , Neoplasias Pancreáticas/tratamiento farmacológico , Plicamicina/administración & dosificación , Poliésteres/química , Polietilenglicoles/química , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/farmacocinética , Línea Celular Tumoral , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Liberación de Fármacos , Femenino , Humanos , Ratones Endogámicos BALB C , Microscopía Confocal , Nanopartículas/química , Tamaño de la Partícula , Plicamicina/farmacocinética , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
4.
Int J Pharm ; 496(2): 822-33, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26474963

RESUMEN

This paper reported the facile fabrication of drug delivery devices for zero-order sustained release by molecular crowding strategy of molecularly imprinting technology. Crowding-assisted molecularly imprinting polymers (MIPs) matrices were prepared by free-radical precipitation polymerization using aminoglutethimide (AG) as a model drug. The crowding effect was achieved by adding polystyrene as a macromolecular co-solute in pre-polymerization mixture. The MIP prepared under the non-MMC condition and the two corresponding non-imprinted particles were tested as controlled vehicles. The release profiles presented zero-order behaviors from two crowding-assisted polymers, the duration of approximately 18h for the crowding-assisted MIP and 10h for the crowding-assisted NIP, respectively while AG were all very rapid released from the other two controlled particles (85% occurring in the first hour). The BET surface area and pore volume of the crowding-assisted MIP were about ten times than those of the controlled MIP. The value of imprinting factor is 6.02 for the crowding-assisted MIP and 1.19 for the controlled MIP evaluated by the equilibrium adsorption experiment. Furthermore, the values of effective diffusivity (Deff) obtained from crowding-assisted MIP (10(-17)cm(2)/s) was about two orders of magnitude smaller than those from the controlled MIP, although the values of free drug diffusivity (D) were all found in the order of 10(-13)cm(2)/s. Compared with the commercial AG tablet, the MMC-assisted MIP gave a markedly high relative bioavailability of 266.3%, whereas the MMC-assisted NIP gave only 57.7%. The results indicated that the MMC condition can modulate the polymer networks approaciate to zero-order release of the drug and maintain the molecular memory pockets, even if under the poor polymerization conditions of MIPs preparation.


Asunto(s)
Sistemas de Liberación de Medicamentos/instrumentación , Impresión Molecular/métodos , Aminoglutetimida/química , Animales , Preparaciones de Acción Retardada , Matemática , Polimerizacion , Poliestirenos/química , Ratas , Ratas Wistar , Solubilidad
5.
Int J Nanomedicine ; 5: 487-97, 2010 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-20957171

RESUMEN

We aimed to evaluate whether the enhancement of the liver accumulation and anti-inflammatory activity of dexamethasone acetate (DXMA) could be achieved by incorporating it into nanostructured lipid carrier (NLCs). DXMA-NLCs were prepared using a film dispersion-ultrasonication method and characterized in terms of particle size, PDI, zeta potential, differential scanning calorimetry, drug loading capacity, encapsulation efficiency, and in vitro release. The biodistribution and pharmacokinetics of DXMA-NLCs in mice were significantly different from those of the DXMA solution (DXMA-sol). The peak concentration of DXMA-NLCs was obtained half an hour after intravenous administration. More than 55.62% of the total administrated dose was present in the liver. An increase of 2.57 fold in the area under the curve was achieved when compared with that of DXMA-sol. DXMA-NLCs exhibited a significant anti-inflammatory and hepatoprotective effect on carrageenan-induced rats and carbon tetrachloride-induced mice compared with DXMA-sol. However, the effect was not in proportion to the dosage. The intermediate and low dosages presented better effects than DXMA-sol. All results indicate that NLCs, as a novel carrier for DXMA, has potential for the treatment of liver diseases, increasing the cure efficiency and decreasing the side effects on other tissues.


Asunto(s)
Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacocinética , Dexametasona/análogos & derivados , Hígado/efectos de los fármacos , Hígado/metabolismo , Nanopartículas/administración & dosificación , Nanopartículas/química , Animales , Tetracloruro de Carbono/toxicidad , Carragenina/toxicidad , Dexametasona/administración & dosificación , Dexametasona/farmacocinética , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Técnicas In Vitro , Liposomas/administración & dosificación , Liposomas/química , Hepatopatías/tratamiento farmacológico , Ratones , Nanomedicina , Nanopartículas/ultraestructura , Ratas , Ratas Wistar , Distribución Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA