Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 23(12)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35742972

RESUMEN

Plant laccase genes belong to a multigene family, play key roles in lignin polymerization, and participate in the resistance of plants to biotic and abiotic stresses. Switchgrass is an important resource for forage and bioenergy production, yet information about the switchgrass laccase gene family is scarce. Using bioinformatic approaches, a genome-wide analysis of the laccase multigene family in switchgrass was carried out in this study. In total, 49 laccase genes (PvLac1 to PvLac49) were identified; these can be divided into five subclades, and 20 of them were identified as targets of miR397. The tandem and segmental duplication of laccase genes on Chr05 and Chr08 contributed to the expansion of the laccase family. The laccase proteins shared conserved signature sequences but displayed relatively low sequence similarity, indicating the potential functional diversity of switchgrass laccases. Switchgrass laccases exhibited distinct tissue/organ expression patterns, revealing that some laccases might be involved in the lignification process during stem development. All five of the laccase isoforms selected from different subclades responded to heavy metal. The immediate response of lignin-related laccases, as well as the delayed response of low-abundance laccases, to heavy-metal treatment shed light on the multiple roles of laccase isoforms in response to heavy-metal stress.


Asunto(s)
Metales Pesados , Panicum , Lacasa/genética , Lacasa/metabolismo , Lignina/metabolismo , Panicum/genética , Panicum/metabolismo , Filogenia , Isoformas de Proteínas/genética
2.
Biomacromolecules ; 22(12): 5097-5107, 2021 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-34723499

RESUMEN

Hyaluronic acid (HA) based hydrogels are one of most functional natural biomaterials in the field of cartilage tissue engineering (CTE). Even with the promising advantages of HA hydrogels, the complicated mechanical properties of the native cartilage have not been realized, and fabricating HA hydrogels with excellent mechanical properties to make them practical in CTE still remains a current challenge. Here, a strategy that integrates hydrogels and nanomaterials is shown to form a HA hydrogel with sufficient mechanical loading for cartilage tissue production and recombination. Cellulose nanofibrils (CNFs) are promising nanomaterial candidates as they possess high mechanical strength and excellent biocompatibility. In this study, we developed methacrylate-functionalized CNFs that are able to photo-crosslink with methacrylated HA to fabricate HA/CNF nanocomposite hydrogels. The present composite hydrogels with a compressive modulus of 0.46 ± 0.05 MPa showed adequate compressive strength (0.198 ± 0.009 MPa) and restorability, which can be expected to employ as a stress-bearing tissue such as articular cartilage. Besides, this nanocomposite hydrogel could provide a good microenvironment for bone marrow mesenchymal stem cell proliferation, as well as chondrogenic differentiation, and exhibit prominent repair effect in the full-thickness cartilage defect model of SD rats. These results suggest that the HA/CNF nanocomposite hydrogel creates a new possibility for fabricating a scaffold in CTE.


Asunto(s)
Cartílago Articular , Hidrogeles , Animales , Celulosa/farmacología , Ácido Hialurónico , Hidrogeles/farmacología , Ratas , Ratas Sprague-Dawley , Ingeniería de Tejidos/métodos
3.
Sci Total Environ ; 944: 173799, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38852863

RESUMEN

Micro-nanoplastics (MNPs) pollution as a global environmental issue has received increasing interest in recent years. MNPs can enter and accumulate in the organisms including human beings mainly via ingestion and inhalation, and large amounts of foodborne MNPs have been frequently detected in human intestinal tracts and fecal samples. MNPs regulate the structure composition and metabolic functions of gut microbiota, which may cause the imbalance of intestinal ecosystems of the hosts and further mediate the occurrence and development of various diseases. In addition, a growing number of MNPs-degrading strains have been isolated from organismal feces. MNPs-degraders colonize the plastic surfaces and form the biofilms, and the long-chain polymers of MNPs can be biologically depolymerized into short chains. In general, MNPs are gradually degraded into small molecule substances (e.g., N2, CH4, H2O, and CO2) via a series of enzymatic catalyses, mainly including biodeterioration, fragmentation, assimilation, and mineralization. In this review, we outline the current progress of MNPs effects on gut microbiota and MNPs degradation by gut microbiota, which provide a certain theoretical basis for fully understanding the knowledge gaps on MNPs-related biological effect and biodegradation.


Asunto(s)
Biodegradación Ambiental , Microbioma Gastrointestinal , Microbioma Gastrointestinal/fisiología , Humanos , Microplásticos , Nanopartículas , Contaminantes Ambientales/metabolismo
4.
Environ Sci Pollut Res Int ; 31(20): 29836-29858, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38592627

RESUMEN

Indirect carbonation of steel slag is an effective method for CO2 storage, reducing emissions, and promoting cleaner production in the steel industry. However, challenges remain, such as low Ca2+ leaching rates and slag management complexities arising from variations in mineral compositions. To address this, a high-temperature modification process is proposed to alter the mineral composition and facilitate the synergistic utilization of calcium and iron. This study delves into the effects of various solid waste modifications on the leaching of Ca2+ and the total iron content within steel slag. Results show that high-basicity modified slag forms Ca2(Al, Fe)2O5, reducing calcium leaching. Low-alkalinity modified slag produces calcium-rich aluminum minerals and also reduces the leaching of Ca2+ ions. At a basicity of 2.5, coal gangue, fly ash, and blast slag achieve maximum Ca2+ leaching rates of 88.93%, 89.46%, and 90.17%, respectively, with corresponding total iron contents of 41.46%, 37.72%, and 35.29%. Upgraded coal gangue exhibits a 50.02% increase in calcium leaching and a 15.58% increase in total iron content compared to the original slag. This enhances CO2 fixation and iron resource utilization. Overall, the proposed indirect carbonation and iron enrichment modification offer a novel approach for the resource utilization and environmental stability of steel slag.


Asunto(s)
Calcio , Residuos Sólidos , Acero , Calcio/química , Hierro/química , Calor
5.
Aquat Toxicol ; 273: 107028, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39047441

RESUMEN

Microplastics (MPs) are ubiquitous in freshwater ecosystems and their accumulation has been considered an emerging threat. Early research on the effects of MPs on macrophytes primarily focused on the toxicological impacts on individual macrophytes, with several studies suggesting that lower concentrations of MPs have little impact on macrophytes. However, the ecological implications of lower MP concentrations on macrophyte communities remain largely unexplored. Here, we experimented to assess the effects of lower concentrations including 25 mg/L, 50 mg/L, 75 mg/L, and 100 mg/L of polyethylene (PE) microplastics on Spirodela polyrhiza and Lemna minor, and their community. Our results also indicated that PE concentrations below 100 mg/L had no significant effect on relative growth rate, specific leaf area, Chlorophyll a, Chlorophyll b, Chlorophyll a + b, carotenoid, malondialdehyde (MDA), catalase, and soluble sugar of monocultural S. polyrhiza. However, a lower concentration of PE significantly decreased the MDA of monocultural L. minor and significantly affected the comprehensive index of S. polyrhiza. These findings suggested that lower concentrations of PE can influence interactions between macrophytes maybe due to the cumulative effects of many weak interactions. Additionally, our study showed that 75 mg/L and 100 mg/L PE additions decreased the competitive balance index value of two macrophytes under mixed-culture condition. This result implied that the ecological influence of lower concentration MPs on macrophytes may manifest at the community level rather than at the population level, due to species-specific responses and varying degrees of sensitivity of macrophytes to PE concentrations. Thus, our study emphasizes the need to closely monitor the ecological consequences of emerging contaminants such as MPs accumulation on macrophyte communities, rather than focusing solely on the morphology and physiology of individual macrophytes.


Asunto(s)
Araceae , Clorofila , Microplásticos , Polietileno , Contaminantes Químicos del Agua , Microplásticos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Polietileno/toxicidad , Araceae/efectos de los fármacos , Clorofila/metabolismo , Clorofila A/metabolismo , Carotenoides/metabolismo , Malondialdehído/metabolismo , Ecosistema
6.
ACS Appl Bio Mater ; 4(12): 8597-8606, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-35005952

RESUMEN

Artificial small-diameter blood vessels (SDBVs) are extremely limited in their thrombosis and still present significant clinical challenges worldwide. In recent years, 3D-bio-printing has offered a powerful technique to fabricate vessel channels in tissue engineering applications. Hydrogels are attractive bio-inks for SDBVs 3D-bio-printing, but they usually present weak mechanical properties. To overcome the weak mechanical properties of hydrogel bio-inks, a printable human umbilical vein endothelial cell (HUVEC)-laden polyrotaxane-alginate (PR-Alg) double-network (DN) hydrogel was fabricated. The PR-Alg DN hydrogel consists of a Ca2+ cross-linked alginate network to form the first network rapidly, and a photo-cross-linked slide-ring network was designed as the second network. By combining special hydrogel structures of slide-ring (SR) and double network (DN), we significantly improved the mechanical properties of hydrogels. The PR-Alg DN hydrogel provides excellent stress (199 ± 20 kPa) and strain (1239 ± 58%), and the fracture energy reaches 668 ± 80 J/m2. Additionally, due to the presence of biocompatible materials and the gentle 3D-bio-printing process, the 3D-bio-printed channels showed outstanding biocompatibility, particularly in HUVECs' survival and proliferation. We anticipate that this work will expand the application of hydrogels with improved mechanical properties in biomedicine, particularly for artificial SDBVs.


Asunto(s)
Hidrogeles , Impresión Tridimensional , Alginatos/farmacología , Materiales Biocompatibles/farmacología , Humanos , Hidrogeles/farmacología , Ingeniería de Tejidos/métodos
7.
Nanoscale ; 12(28): 14976-14995, 2020 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-32644089

RESUMEN

Tissue engineering is an important field of regenerative medicine, which combines scaffolds and cell transplantation to develop substitute tissues and/or promote tissue regeneration. Hydrogels, a three-dimensional network with high water content and biocompatibility, have been widely used as scaffolds to mimic the structure and properties of tissues. However, the low mechanical strength and limited functions of traditional hydrogels greatly limited their applications in tissue engineering. Recently, nanocomposite hydrogels, with its advantages of high mechanical property and some unique properties (such as electrical conductivity, antibacterial, antioxidation, magnetic responsiveness), have emerged as the most versatile and innovative technology, which provides a new opportunity as a unique tool for fabricating hydrogels with excellent properties. In this review, we summarize the recent advances in fabricating nanocomposite hydrogels and their applications in tissue engineering. In addition, the future and prospects of nanocomposite hydrogels for tissue engineering are also discussed.


Asunto(s)
Hidrogeles , Ingeniería de Tejidos , Conductividad Eléctrica , Nanogeles , Medicina Regenerativa , Andamios del Tejido
8.
J Mater Chem B ; 8(27): 5845-5848, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32667029

RESUMEN

An injectable BMSC-encapsulated double network (DN) hydrogel was fabricated via silk fibroin (SF) and poly(ethylene glycol) (PEG), which could efficiently support the survival and proliferation of BMSCs in vitro as well as cartilage repair in vivo, and provides a new strategy for cartilage tissue engineering.


Asunto(s)
Materiales Biocompatibles/química , Cartílago/metabolismo , Fibroínas/química , Hidrogeles/química , Polietilenglicoles/química , Andamios del Tejido/química , Animales , Condrogénesis , Humanos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA