Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Biotechnol ; 24(1): 36, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38796454

RESUMEN

BACKGROUND: To establish a strategy for stem cell-related tissue regeneration therapy, human gingival mesenchymal stem cells (hGMSCs) were loaded with three-dimensional (3D) bioengineered Matrigel matrix scaffolds in high-cell density microtissues to promote local tissue restoration. METHODS: The biological performance and stemness of hGMSCs under 3D culture conditions were investigated by viability and multidirectional differentiation analyses. A Sprague‒Dawley (SD) rat full-thickness buccal mucosa wound model was established, and hGMSCs/Matrigel were injected into the submucosa of the wound. Autologous stem cell proliferation and wound repair in local tissue were assessed by histomorphometry and immunohistochemical staining. RESULTS: Three-dimensional suspension culture can provide a more natural environment for extensions and contacts between hGMSCs, and the viability and adipogenic differentiation capacity of hGMSCs were significantly enhanced. An animal study showed that hGMSCs/Matrigel significantly accelerated soft tissue repair by promoting autologous stem cell proliferation and enhancing the generation of collagen fibers in local tissue. CONCLUSION: Three-dimensional cell culture with hydrogel scaffolds, such as Matrigel, can effectively improve the biological function and maintain the stemness of stem cells. The therapeutic efficacy of hGMSCs/Matrigel was confirmed, as these cells could effectively stimulate soft tissue repair to promote the healing process by activating the host microenvironment and autologous stem cells.


Asunto(s)
Colágeno , Combinación de Medicamentos , Laminina , Células Madre Mesenquimatosas , Proteoglicanos , Ratas Sprague-Dawley , Andamios del Tejido , Cicatrización de Heridas , Animales , Laminina/química , Proteoglicanos/química , Colágeno/química , Humanos , Ratas , Células Madre Mesenquimatosas/citología , Andamios del Tejido/química , Diferenciación Celular , Proliferación Celular , Encía/citología , Técnicas de Cultivo Tridimensional de Células/métodos , Células Cultivadas , Ingeniería de Tejidos/métodos , Masculino , Mucosa Bucal/citología
2.
BMC Oral Health ; 24(1): 7, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172784

RESUMEN

PURPOSE: To investigate the balance between post-treatment effect and continued nature growth after maxillary protraction treatment in patients with skeletal class III malocclusion. METHODS: 31 patients aged 8.79 ± 1.65 years with skeletal Class III malocclusion had been treated with maxillary protraction and the treatment lasted an average of 1.16 years. The average observation duration after treatment in the maxillary protraction group was 2.05 ± 0.39 years. In the control groups, a sample of 22 patients (9.64 ± 2.53 years) with untreated skeletal class III malocclusion and 24 patients (9.28 ± 0.96 years) with skeletal class I malocclusion were matched to the treatment group according to age, sex and observation period. The mean observation interval of the control groups was 2.39 ± 1.29 years in the class III group and 1.97 ± 0.49 years in the class I group. RESULTS: The active orthopedic treatment effect showed a opposite trend to the natural craniomaxillofacial growth effect after treatment in many aspects. In the observation duration of treatment group, decrease in ANB, Wits appraisal and BAr-AAr were statistically significant compared to class I control group (p < 0.001), and there was a significant increase in NA-FH (P < 0.001) which was contrary to class III control group. Treatment group presented a significant increase in Gn-Co (P < 0.01) and Co-Go (P < 0.001), except for changes in the extent of the mandibular base (Pog-Go, P = 0.149) compared to class I control group. The vertical maxillomandibular skeletal variables (Gonial; MP-SN; MP-FH; Y-axis) in treatment group decreased significantly compared to those in class III control group (P < 0.01). U1-SN and L1-MP showed a significant increase, which was similar to the class I group (P > 0.05), and overjet decreased significantly relative to both of the two control groups (P < 0.05). CONCLUSION: Maxillary protraction therapy led to stable outcomes in approximately 77.42% of children with Class III malocclusion approximately 2 years after treatment. Unfavorable skeletal changes were mainly due to the greater protrusion of the mandible but maxillary protraction did have a certain degree of postimpact on the mandibular base. Protraction therapy does not fundamentally change the mode of maxillary growth in Class III subjects except for the advancement of the maxilla. Craniomaxillofacial region tend to restabilize after treatment and lead to skeletal growth rotation and more dentoalveolar compensation.


Asunto(s)
Maloclusión de Angle Clase III , Maloclusión , Niño , Humanos , Maxilar , Estudios Retrospectivos , Grupos Control , Cefalometría , Maloclusión de Angle Clase III/terapia , Mandíbula
3.
J Appl Biomater Funct Mater ; 18: 2280800019900094, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32931350

RESUMEN

Simvastatin (SIM) has been documented to induce the osteogenic differentiation of periodontal ligament stem cells (PDLSCs). To establish an efficient release system for periodontal regeneration, a polycaprolactone (PCL) membrane scaffold containing SIM was electrospun and evaluated. The obtained PCL-SIM membrane scaffold showed sustained release up to 28 days, without deleterious effect on proliferation of PDLSCs on the scaffolds. PDLSCs were seeded onto scaffolds and their osteogenic differentiation was evaluated. After 21 days, expressions of collagen type I, alkaline phosphatase and bone sialoprotein genes were significantly upregulated and mineralized matrix formation was increased on the PCL-SIM scaffolds compared with the PCL scaffolds. In a heterotopic periodontal regeneration model, a cell sheet-scaffold construct was assembled by placement of multilayers of PDLSC sheets on PCL or PCL-SIM scaffolds, and these were then placed between dentin and ceramic bovine bone for subcutaneous implantation in athymic mice. After 8 weeks, the PCL-SIM membrane showed formation of significantly more ectopic cementum-like mineral on the dentin surface. These findings demonstrated that the PCL-SIM membrane scaffold promotes cementum-like tissue formation by sustained drug release, suggesting the feasibility of its therapeutic use with PDLSC sheets to improve periodontal regeneration.


Asunto(s)
Materiales Biocompatibles/química , Ligamento Periodontal/efectos de los fármacos , Regeneración , Simvastatina/administración & dosificación , Células Madre/citología , Andamios del Tejido , Células 3T3 , Fosfatasa Alcalina/biosíntesis , Animales , Biomimética , Bovinos , Diferenciación Celular , Proliferación Celular , Cerámica , Colágeno Tipo I/biosíntesis , Dentina/química , Relación Dosis-Respuesta a Droga , Sistemas de Liberación de Medicamentos , Eliminación de Gen , Sialoproteína de Unión a Integrina/biosíntesis , Ratones , Ratones Desnudos , Osteogénesis , Poliésteres/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA