Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(8)2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37108186

RESUMEN

Lesioned tissue requires synchronous control of disease and regeneration progression after surgery. It is necessary to develop therapeutic and regenerative scaffolds. Here, hyaluronic acid (HA) was esterified with benzyl groups to prepare hyaluronic acid derivative (HA-Bn) nanofibers via electrospinning. Electrospun membranes with average fiber diameters of 407.64 ± 124.8 nm (H400), 642.3 ± 228.76 nm (H600), and 841.09 ± 236.86 nm (H800) were obtained by adjusting the spinning parameters. These fibrous membranes had good biocompatibility, among which the H400 group could promote the proliferation and spread of L929 cells. Using the postoperative treatment of malignant skin melanoma as an example, the anticancer drug doxorubicin (DOX) was encapsulated in nanofibers via hybrid electrospinning. The UV spectroscopy of DOX-loaded nanofibers (HA-DOX) revealed that DOX was successfully encapsulated, and there was a π-π interaction between aromatic DOX and HA-Bn. The drug release profile confirmed the sustained release of about 90%, achieved within 7 days. In vitro cell experiments proved that the HA-DOX nanofiber had a considerable inhibitory effect on B16F10 cells. Therefore, the HA-Bn electrospun membrane could facilitate the potential regeneration of injured skin tissues and be incorporated with drugs to achieve therapeutic effects, offering a powerful approach to developing therapeutic and regenerative biomaterial.


Asunto(s)
Antineoplásicos , Nanofibras , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/química , Ácido Hialurónico/química , Nanofibras/química , Doxorrubicina/farmacología , Doxorrubicina/química
2.
Biomed Mater ; 18(6)2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37582380

RESUMEN

Compared with single-channel nerve conduits, multichannel artificial nerve conduits are more beneficial for repairing damaged peripheral nerves of long-distance nerve defects. Multichannel nerve conduits can be fabricated by the mold method and the electrospinning method but with disadvantages such as low strength and large differences in batches, while the braiding method can solve this problem. In this study, polylactic acid yarns were used as the braiding yarn, and the number of spindles during braiding was varied to achieve 4, 5, 6, 7 and 8 multichannel artificial nerve conduits. A mathematical model of the number of braiding yarn spindles required to meet certain size specification parameters of the multichannel conduit was established. The cross-sectional morphology and mechanical properties of the conduits were characterized by scanning electron microscopy observation and mechanical testing; the results showed that the multichannel structure was well constructed; the tensile strength of the multichannel conduit was more than 30 times that of the rabbit tibial nerve. The biocompatibility of the conduit was tested; thein vitrocell culture results proved that the braided multichannel nerve conduits were nontoxic to Schwann cells, and the cell adhesion and proliferation were optimal in the 4-channel conduit among the multichannel conduits, which was close to the single-channel conduit.


Asunto(s)
Regeneración Nerviosa , Nervios Periféricos , Animales , Conejos , Estudios Transversales , Regeneración Nerviosa/fisiología , Nervios Periféricos/fisiología , Andamios del Tejido/química , Poliésteres , Células de Schwann/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA