Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Environ Res ; 216(Pt 3): 114698, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36328222

RESUMEN

Microalgae act as the entrance of polybrominated diphenyl ethers (PBDEs) from abiotic to biotic environments, which controlled the environmental fate of PBDEs in aquatic environments. Combing with typical coastal environmental characteristics including extracellular polymer substances (EPS) enrichment, light limitation and nitrogen starvation, the changes of adsorption and absorption kinetics of BDE-47 by Chlorella sp. and the role of EPS therein were investigated. The results quantified the adsorption and absorption kinetics of BDE-47 by Chlorella sp. cells and fitted it by the Lagergren pseudo first order model. Furthermore, we found the adsorption and absorption kinetics could be changed by the above mentioned environmental factors. To be specific, the total BDE-47 adsorption amounts per microalgal cell were increased as the increase of ambient EPS (proteins or carbohydrates), attributing to the increase of soluble (SL)-EPS contents; increased total BDE-47 adsorption amounts but decreased absorption rates were found under light limitation and nitrogen starvation, which were attributed to increased bound (B)-EPS contents and protein/carbohydrates (P/C) ratios therein, respectively. Therefore, our study elucidated the adsorption and absorption kinetics of PBDEs by microalgae could be influenced by ambient environmental changes, clarified the roles of SL-EPS, B-EPS contents and P/C ratios, providing a solid basis for evaluating the environmental fate of PBDEs in the marine environments.


Asunto(s)
Chlorella , Microalgas , Éteres Difenilos Halogenados/metabolismo , Adsorción , Chlorella/metabolismo , Cinética , Microalgas/metabolismo , Nitrógeno , Carbohidratos , Polímeros
2.
Ecotoxicol Environ Saf ; 244: 114072, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36113269

RESUMEN

Increasing marine microplastics (MPs) pollution potentially threatens the stability of phytoplankton community structures in marine environments. MPs toxicities to microalgae are largely determined by particle size, while the size-dependent mechanisms are still not fully understood. In this study, two sizes (0.1 µm and 1 µm) of polystyrene (PS) MPs were used as experimental targets to systemically compare their different effecting mechanisms on the marine model diatom Thalassiosira pseudonana with respect to oxidative stress and photosynthesis. The results indicated the toxicity of 1 µm sized MPs was higher than 0.1 µm sized MPs regarding to population growth. In condition of similar microalgal population inhibition rates, we found more enhanced cellular oxidative stress and cell death happened in the 1 µm MPs treatments, which could be linked to higher zeta potential of 1 µm MPs and more severe cell surface damage; microalgal surface light shading and cellular pigments decline were more obvious in the 0.1 µm MPs treatment, which could be linked to high aggregation abilities of 0.1 µm MPs. Gene expressions supported the morphological and physiological findings on the transcriptional level. Environmental related MPs concentrations (5 µg L-1) also aroused gene expression changes of T. pseudonana while more changing genes were found under 0.1 µm MPs than 1 µm MPs. These results provide novel insights into the size-dependent mechanisms of MPs toxicity on marine microalgae, as well as their potential influence on the marine environment.


Asunto(s)
Diatomeas , Microalgas , Contaminantes Químicos del Agua , Diatomeas/genética , Microalgas/genética , Microplásticos/toxicidad , Estrés Oxidativo , Fotosíntesis , Plásticos , Poliestirenos/toxicidad , Contaminantes Químicos del Agua/toxicidad
3.
Environ Pollut ; 348: 123850, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38548148

RESUMEN

As emerging pollutants in the aquatic environments, micro- and nano-plastics (MNPs) aroused widespread environmental concerns for their potential threats to the ecological health. Previous research has proved that microalgae growth could recover from the MNPs toxicities, in which the extracellular polymeric substances (EPS) might play the key role. In order to comprehensively investigate the recovery process of microalgae from MNPs stress and the effecting mechanisms of EPS therein, this study conducted a series of experiments by employing two sizes (0.1 and 1 µm) of polystyrene (PS) MNPs and the marine model diatom Thalassiosira pseudonana during 14 days. The results indicated: the pigments accumulations and photosynthetic recovery of T. pseudonana under MPs exposure showed in the early stage (4-5 days), while the elevation of reactive oxygen species (ROS) and EPS contents lasted longer time period (7-8 days). EPS was aggregated with MNPs particles and microalgal cells, corresponding to the increased settlement rates. More increase of soluble (SL)-EPS contents was found than bound (B)-EPS under MNPs exposure, in which the increase of the protein proportion and humic acid-like substances in SL-EPS was found, thus facilitating aggregates formation. ROS was the signaling molecule mediating the overproduction of EPS. The transcriptional results further proved the enhanced EPS biosynthesis on the molecular level. Therefore, this study elucidated the recovery pattern of microalgae from MNPs stress and linked "ROS-EPS production changes-aggregation formation" together during the growth recovery process, with important scientific and environmental significance.


Asunto(s)
Diatomeas , Microalgas , Contaminantes Químicos del Agua , Poliestirenos/toxicidad , Especies Reactivas de Oxígeno , Microplásticos/toxicidad , Matriz Extracelular de Sustancias Poliméricas , Contaminantes Químicos del Agua/toxicidad , Plásticos
4.
Environ Pollut ; 338: 122702, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37821042

RESUMEN

A variety of studies have investigated the toxic effects of microplastics (MPs) on microalgae, but few of them considered their influence on dinoflagellate toxins production, which could cause significant ecological safety concerns in coastal areas. This research investigated the impacts of 5 µg L-1 and 5 mg L-1 polystyrene (PS) MPs on the changes of paralytic shellfish toxins (PSTs) production and their relationship with cellular oxidative stress of Alexandrium tamarense, a common harmful algal blooms causative dinoflagellate. The results showed elevation of reactive oxygen species (ROS) levels, activation of antioxidant system and overproduction of PSTs were positively correlated under PS MPs exposure (especially under 5 mg L-1 PS MPs), and the PSTs changes were eliminated by the ROS inhibitor. Further transcriptomic analysis revealed that ROS could enhance biosynthesis of glutamate, providing raw materials for PSTs precursor arginine, accompanied with enhanced acetyl-CoA and ATP production, finally leading to the overproduction of PSTs. Moreover, the oxidative intracellular environments might block the reduction process from STX to C1&C2, leading to the increase of STX and decrease of C1&C2 proportions. This work brings the first evidence that ROS could mediate PSTs production and compositions of Alexandrium under MPs exposure, with important scientific and ecological significance.


Asunto(s)
Dinoflagelados , Plásticos , Plásticos/farmacología , Especies Reactivas de Oxígeno , Microplásticos/toxicidad , Toxinas Marinas/toxicidad , Mariscos
5.
Sci Total Environ ; 892: 164388, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37236467

RESUMEN

Microplastics (MPs) in marine environments simultaneously affect microalgae with UV-B radiation, while their joint effecting mechanisms remain largely unknown. To fill this research gap, the joint effects of polymethyl methacrylate (PMMA) MPs and UV-B radiation (natural environments intensity) on the model marine diatom Thalassiosira pseudonana were investigated. Antagonism was found between the two factors with regards to population growth. Furthermore, we found more inhibited population growth and photosynthetic parameters when pre-treated with PMMA MPs compared to pre-treated with UV-B radiation before joint-treated by the two factors. Transcriptional analysis elucidated that UV-B radiation could alleviate the down-regulation of photosynthetic (PSII, cyt b6/f complex and photosynthetic electron transport) and chlorophyll biosynthesis genes caused by PMMA MPs. Besides, the genes encoding carbon fixation and metabolisms was up-regulated under UV-B radiation, which could provide extra energy for the enhanced anti-oxidative activities and DNA replication-repair processes. These consequences showed that the toxicity of PMMA MPs was comprehensively alleviated when T. pseudonana was jointed treated by UV-B radiation. Our results reveled the underlying molecular mechanisms of antagonistic effects between PMMA MPs and UV-B radiation. This study provides important information that environmental factors like UV-B radiation should be considered when accessing the ecological risks of MPs on marine organisms.


Asunto(s)
Diatomeas , Microplásticos/metabolismo , Plásticos/metabolismo , Polimetil Metacrilato/toxicidad , Polimetil Metacrilato/metabolismo , Fotosíntesis
6.
Chemosphere ; 291(Pt 2): 132943, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34793842

RESUMEN

Micro- and nano-plastics (MNPs) are increasingly prevalent pollutants in marine ecosystems and result in various deleterious effects on marine organisms. There have been studies evaluated the toxic effects of MNPs on marine microalgae, but few of them focused on the effects of MNPs on dinoflagellate species and their toxins production, which could have significant implications on human health and ecological safety in coastal areas. In this study, the common harmful algal blooms-causing dinoflagellate Alexandrium tamarense was exposed to 0.1 and 1 µm sized polystyrene nanoplastics (NPs) to investigate the responding patterns of population growth, multiple physiological functions, as well as the intracellular paralytic shellfish toxins (PSTs) productions. The results indicated the population growth, photosynthetic parameters, nutrients (nitrate and phosphate) uptake rates and extracellular carbonic anhydrase activities (CAext) were all inhibited by the two sized NPs, accompanied by the prolonged and more aggregated microalgal cells under the observation of scanning electron microscope (SEM), and the inhibition effects were more severe under 1 µm sized NPs than 0.1 µm sized NPs. Finally, we found the intracellular PSTs contents increased 73.59% exposed to 0.1 µm sized NPs while decreased 85.50% exposed to 1 µm sized NPs comparing the controls at 96 h, without significant changes of relative compositions. These results provided evidence that MNPs were toxic to A. tamarense and affected their intracellular PSTs productions within 96 h, which is critical to consider when evaluating the potential risks of MNPs in marine ecosystems.


Asunto(s)
Dinoflagelados , Poliestirenos , Ecosistema , Humanos , Microplásticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA