Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 155: 106553, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38640694

RESUMEN

Developing a gradient porous scaffold similar to bone structure is gaining increasing attention in bone tissue engineering. The GelMA/HAP hydrogel has demonstrated potential in bone repair. Although 3D printing can build GelMA/HAP with porous structure, fabricating porous GelMA/HAP with gradient porosity and pore size in one step remains challenging. In this paper, a gradient porous structure with controllable pore size, based on gelatin methacryloyl (GelMA) and hydxroxyapatite (HAP), was engineered and printed using stereolithography. Firstly, the GelMA and HAP were mixed to prepare a hydrogel with a solid content ranging from 10 wt% to 50 wt% for stereolithography. Taking advantage of the sol-gel characteristics of GelMA/HAP hydrogel, GelMA/HAP was fed on the workbench through a combination of extrusion and paving to form a thin layer. During the curing of each layer, the hydrogel exposed to the curing of a single UV beam immediately solidified, forming a highly interconnected porous structure. Additionally, the hydrogel outside the scanning range could be further polymerized to form a relatively dense structure due to the residual laser energy. Finally, without gradient structural design or changing printing parameters, the gradient porous structure of bone-like could be printed in a single-step process. By adjusting the curing parameters of the single UV beam and the concentration and size of ceramic in the hydrogel, the printed pore diameter of the spongy structure could be controlled within the range of 50-260 µm, while the thickness of the compact area could be adjusted within 130-670 µm.


Asunto(s)
Materiales Biocompatibles , Durapatita , Gelatina , Metacrilatos , Impresión Tridimensional , Porosidad , Gelatina/química , Materiales Biocompatibles/química , Durapatita/química , Metacrilatos/química , Andamios del Tejido/química , Hidrogeles/química , Ingeniería de Tejidos
2.
ACS Appl Mater Interfaces ; 16(23): 30430-30442, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38814614

RESUMEN

Patients with open abdominal (OA) wounds have a mortality risk of up to 30%, and the resulting disabilities would have profound effects on patients. Here, we present a novel double-sided adhesive tape developed for the management of OA wounds. The tape features an asymmetrical structure and employs an acellular dermal matrix (ADM) with asymmetric wettability as a scaffold. It is constructed by integrating a tissue-adhesive hydrogel composed of polydopamine (pDA), quaternary ammonium chitosan (QCS), and acrylic acid cross-linking onto the bottom side of the ADM. Following surface modification with pDA, the ADM would exhibit characteristics resistant to bacterial adhesion. Furthermore, the presence of a developed hydrogel ensures that the tape not only possesses tissue adhesiveness and noninvasive peelability but also effectively mitigates damage caused by oxidative stress. Besides, the ADM inherits the strength of the skin, imparting high burst pressure tolerance to the tape. Based on these remarkable attributes, we demonstrate that this double-sided (D-S) tape facilitates the repair of OA wounds, mitigates damage to exposed intestinal tubes, and reduces the risk of intestinal fistulae and complications. Additionally, the D-S tape is equally applicable to treating other abdominal injuries, such as gastric perforations. It effectively seals the perforation, promotes injury repair, and prevents the formation of postoperative adhesions. These notable features indicate that the presented double-sided tape holds significant potential value in the biomedical field.


Asunto(s)
Traumatismos Abdominales , Animales , Hidrogeles/química , Hidrogeles/farmacología , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología , Quitosano/química , Quitosano/farmacología , Ratones , Polímeros/química , Polímeros/farmacología , Humanos , Indoles/química , Indoles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Presión , Masculino , Ratas
3.
Front Pharmacol ; 15: 1351871, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39015370

RESUMEN

Introduction: Fuqi Guben Gao (FQGBG) is a botanical drug formulation composed of FuZi (FZ; Aconitum carmichaelii Debeaux [Ranunculaceae; Aconiti radix cocta]), Wolfberry (Lycium barbarum L. [Solanaceae; Lycii fructus]), and Cinnamon (Neolitsea cassia (L.) Kosterm. [Lauraceae; Cinnamomi cortex]). It has been used to clinically treat nocturia caused by kidney-yang deficiency syndrome (KYDS) for over 30 years and warms kidney yang. However, the pharmacological mechanism and the safety of FQGBG in humans require further exploration and evaluation. Methods: We investigated the efficacy of FQGBG in reducing urination and improving immune organ damage in two kinds of KYDS model rats (hydrocortisone-induced model and natural aging model), and evaluated the safety of different oral FQGBG doses through pharmacokinetic (PK) parameters, metabonomics, and occurrence of adverse reactions in healthy Chinese participants in a randomized, double-blind, placebo-controlled, single ascending dose clinical trial. Forty-two participants were allocated to six cohorts with FQGBG doses of 12.5, 25, 50, 75, 100, and 125 g. The PKs of FQGBG in plasma were determined using a fully validated LC-MS/MS method. Results: FQGBG significantly and rapidly improved the symptoms of increased urination in both two KYDS model rats and significantly resisted the adrenal atrophy in hydrocortisone-induced KYDS model rats. No apparent increase in adverse events was observed with dose escalation. Major adverse drug reactions included toothache, thirst, heat sensation, gum pain, diarrhea, abdominal distension, T-wave changes, and elevated creatinine levels. The PK results showed a higher exposure level of benzoylhypaconine (BHA) than benzoylmesaconine (BMA) and a shorter half-life of BMA than BHA. Toxic diester alkaloids, aconitine, mesaconitine, and hypaconitine were below the lower quantitative limit. Drug-induced metabolite markers primarily included lysophosphatidylcholines, fatty acids, phenylalanine, and arginine metabolites; no safety-related metabolite changes were observed. Conclusion: Under the investigated dosing regimen, FQGBG was safe. The efficacy mechanism of FQGBG in treating nocturia caused by KYDS may be related to the improvement of the hypothalamus-pituitary-adrenal axis function and increased energy metabolism. Clinical Trial Registration: https://www.chictr.org.cn/showproj.html?proj=26934, identifier ChiCTR1800015840.

4.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 40(5): 522-531, 2022 Oct 01.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-38596972

RESUMEN

OBJECTIVES: This study aimed to prepare functional composite electrospinning fibrous membranes with the functions of antifibrosis and bacteriostasis, as well as to explore its repair effect on rat jaw defect. METHODS: Poly-(lactic acid-co-glycolic acid) fibrous membrane loaded with cyclic-arginine-glycine-aspartic acid sequence, ornidazole, and nanohydroxyapatite (n-HA) was prepared by electrospinning as the functional layer (GBRL) for adhering onto defective bone. A barrier layer with the function of supporting and isolating different functional layers was prepared by tape-casting method. Poly(p-dioxanone-co-l-phenylalanine) fiber membrane with the function of inhibiting fibrosis was prepared by electrospinning technology as the antifibrosis layer (AFL). The morphology of the composite membrane was characterized by scanning electron microscopy. The effects of different functional layers on the proliferation of mouse osteoblast precursor cells (MC3T3-E1) and mouse fibroblasts (L929) were studied by cell-proliferation test (CCK-8 method). The inhibitory effect of composite membrane on the proliferation of Porphyromonas gingivalis was studied by bacteriostatic circle test. A rat mandibular-bone defect model was established to study the repair effect of composite fiber membrane on bone-defect tissue. This repair effect was compared with that of collagen oral-repair membrane commonly used in clinics. RESULTS: The GBRL layer could support the proliferation of MC3T3-E1 cells, and the AFL layer could inhibit the proliferation of L929 cells. Composite membranes loaded with ornidazole could inhibit the proliferation of Porphyromonas gingivalis. Various composite membranes can induce the reconstruction of rat jaw defects, among which the composite membranes loaded with ornidazole and n-HA had the best repair effect, which was better than that of collagen oral-repair membrane. CONCLUSIONS: The electrospun membrane loaded with ornidazole and n-HA as the composite fiber membrane of GBRL layer had excellent antibacterial and bone-tissue-regeneration activity. The effect was better than that of the commonly used collagen oral-repair membrane. Therefore, this material has great potential to induce bone regeneration for defects caused by periodontal diseases.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA