Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Drug Dev Ind Pharm ; 49(4): 341-347, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37272387

RESUMEN

PURPOSE: A novel formulation for Ulcerative Colitis (UC) treatment by rectal administration with budesonide liposomes (Bud Lip) and thermosensitive gel (Gel) was developed for future clinical use. To evaluate the anti-inflammatory activity and colon mucosal protection of this novel formulation compared with the other three in mice. METHODS: Bud Lip was prepared by reverse evaporation method and then dispersed in solutions with PL407 and PL188 by a cold method. Male mice were induced to UC by dextran sulfate sodium (DSS) and were treated for 14 days by rectal administration, as follows: Bud enema (a conventional suspension formulation); Bud Lip; Bud Gel; Bud Lip-Gel; saline. And a negative control without colitis was also used. Disease activity index (DAI), and macroscopic and microscopic damage scores in colon tissues were used to evaluate the effect of therapy. The levels of IL-6 and IL-10 in serum and the concentrations of TNF-α and IL-10 and myeloperoxidase (MPO) activity in colon tissue were also introduced. RESULTS: In UC mice model, Bud Lip-Gel showed inflammation was alleviated significantly, and the treatment was highly associated with lower DAI, less macroscopic and microscopic colonic damage and downregulation of pro-inflammatory cytokines TNF-α, IL-6 and MPO. Bud Lip-Gel had advantages over Bud, Bud Lip, Bud Gel in the treatment of active UC. CONCLUSION: Novel Bud liposomes complex in thermosensitive Gel effectively mitigated symptoms, alleviated macroscopic and microscopic colon damage, and reduced inflammatory reaction in UC mice, which might be a potential strategy for UC treatment.


Asunto(s)
Colitis Ulcerosa , Masculino , Animales , Ratones , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Interleucina-10/efectos adversos , Liposomas , Factor de Necrosis Tumoral alfa , Budesonida/farmacología , Interleucina-6/efectos adversos , Inflamación/tratamiento farmacológico
2.
Mol Pharm ; 16(11): 4696-4710, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31589818

RESUMEN

Colorectal cancer (CRC) is one of the most common cancers worldwide. MicroRNAs (miRNAs) play a vital role in a variety of biology processes. Our previous work identified miR-139-5p as a tumor suppressor gene overexpressed in CRC that assisted in inhibiting progression of cancer. The main challenge of miRNAs as therapeutic agents is their rapid degradation in plasma, poor uptake, and off-target effects. Therefore, the development of miRNA-based therapies is necessary. In this study, we developed a cationic liposome-based nanoparticle loaded with miR-139-5p (miR-139-5p-HSPC/DOTAP/Chol/DSPE-PEG2000-COOH nanoparticles, MNPs) and surface-decorated with epithelial cell adhesion molecule (EpCAM) aptamer (Apt) (miR-139-5p-EpCAM Apt-HSPC/DOTAP/Chol/DSPE-PEG2000-COOH nanoparticles, MANPs) for the targeted treatment of CRC. The size of MANPs was 150.3 ± 8.8 nm, which had a round-shaped appearance and functional dispersion capabilities. It also showed negligible hemolysis in the blood. MANPs markedly inhibited the proliferation, migration, and invasion of one or more CRC cell lines in vitro. Furthermore, we demonstrated the uptake and targeting ability of MANPs in vivo and in vitro. MANPs inhibit the growth of HCT8 cells in vitro and have a significant tumor suppressive effect on subcutaneous HCT8 colorectal tumor mice. Our results demonstrated that MANPs were an effective carrier approach to deliver therapeutic miRNAs to CRC.


Asunto(s)
Aptámeros de Péptidos/química , Cationes/química , Neoplasias Colorrectales/tratamiento farmacológico , Molécula de Adhesión Celular Epitelial/química , Liposomas/química , MicroARNs/química , Nanopartículas/química , Animales , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Neoplasias Colorrectales/metabolismo , Molécula de Adhesión Celular Epitelial/metabolismo , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Células HeLa , Xenoinjertos/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos
3.
Biomed Mater ; 17(4)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35477160

RESUMEN

Angiogenesis, an essential prerequisite to osteogenesis in bone repair and regeneration, can be mediated by immunoregulation of macrophages. Magnesium and its alloys are promising biodegradable bone implant materials and can affect immunoregulation of macrophages by the degradation products (magnesium ions). Nevertheless, the mechanism of macrophage-derived exosomes stimulated by Mg ions in immunoregulation is still not well understood. Herein, 10-50 mM magnesium ions are shown to inhibit the macrophage viability and proliferation in a dose-dependent manner, but a high concentration results in macrophage apoptosis. The exosomes secreted by macrophages from magnesium ion stimulation inhibit angiogenesis of endothelial cells, as manifested by the suppressed cell viability, proliferation, migration, and tube formation, which arise at least partially from exosome-mediated downregulation of endothelial nitric oxide and the vascular endothelial growth factor. The findings reported in this paper suggest that the bio-functionality of biodegradable magnesium alloys must be considered from the perspective of immunoregulation of macrophage-derived exosomes. Our results also suggest potential cancer therapy by inhibiting tumor-associated angiogenesis.


Asunto(s)
Exosomas , Aleaciones , Proliferación Celular , Células Endoteliales , Exosomas/metabolismo , Humanos , Iones , Macrófagos , Magnesio , Neovascularización Patológica/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA