Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Pathog ; 20(10): e1012623, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39405339

RESUMEN

It is a great challenge to isolate the broadly neutralizing antibodies (bnAbs) against foot-and-mouth disease virus (FMDV) due to its existence as seven distinct serotypes without cross-protection. Here, by vaccination of pig with FMDV serotype O and A whole virus antigens, we obtained 10 bnAbs against serotypes O, A and/or Asia1 by dissecting 216 common clonotypes of two serotype O and A specific porcine B-cell receptor (BCR) gene repertoires containing total 12720 B cell clones, indicating the induction of cross-serotype bnAbs after sequential vaccination with serotypes O and A antigens. The majority of porcine bnAbs (9/10) were derived from terminally differentiated B cells of different clonal lineages, which convergently targeted the conserved "RGDL" motif on structural protein VP1 of FMDV by mimicking receptor recognition to inhibit viral attachment to cells. Cryo-EM complex structures revealed that the other bnAb pOA-2 specifically targets a novel inter-pentamer antigen structure surrounding the viral three-fold axis, with a highly conserved determinant at residue 68 on VP2. This unique binding pattern enabled cross-serotype neutralization by destabilizing the viral particle. The evolutionary analysis of pOA-2 demonstrated its origin from an intermediate B-cell, emphasizing the crucial role of somatic hypermutations (SHMs) in balancing the breadth and potency of neutralization. However, excessive SHMs may deviate from the trajectory of broad neutralization. This study provides a strategy to uncover bnAbs against highly mutable pathogens and the cross-serotype antigenic structures to explore broadly protective FMDV vaccine.

2.
PLoS Pathog ; 19(11): e1011811, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37983290

RESUMEN

Foot-and-mouth disease virus (FMDV) serotype A is antigenically most variable within serotypes. The structures of conserved and variable antigenic sites were not well resolved. Here, a historical A/AF72 strain from A22 lineage and a latest A/GDMM/2013 strain from G2 genotype of Sea97 lineage were respectively used as bait antigen to screen single B cell antibodies from bovine sequentially vaccinated with A/WH/CHA/09 (G1 genotype of Sea97 lineage), A/GDMM/2013 and A/AF72 antigens. Total of 39 strain-specific and 5 broad neutralizing antibodies (bnAbs) were isolated and characterized. Two conserved antigenic sites were revealed by the Cryo-EM structures of FMDV serotype A with two bnAbs W2 and W125. The contact sites with both VH and VL of W125 were closely around icosahedral threefold axis and covered the B-C, E-F, and H-I loops on VP2 and the B-B knob and H-I loop on VP3; while contact sites with only VH of W2 concentrated on B-B knob, B-C and E-F loops on VP3 scattering around the three-fold axis of viral particle. Additional highly conserved epitopes also involved key residues of VP158, VP1147 and both VP272 / VP1147 as determined respectively by bnAb W153, W145 and W151-resistant mutants. Furthermore, the epitopes recognized by 20 strain-specific neutralization antibodies involved the key residues located on VP3 68 for A/AF72 (11/20) and VP3 175 position for A/GDMM/2013 (9/19), respectively, which revealed antigenic variation between different strains of serotype A. Analysis of antibody-driven variations on capsid of two virus strains showed a relatively stable VP2 and more variable VP3 and VP1. This study provided important information on conserve and variable antigen structures to design broad-spectrum molecular vaccine against FMDV serotype A.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Bovinos , Anticuerpos Neutralizantes , Serogrupo , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes/genética , Epítopos , Proteínas de la Cápside/genética , Anticuerpos Monoclonales
3.
Appl Microbiol Biotechnol ; 107(2-3): 639-650, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36586016

RESUMEN

OBJECTIVE: Foot-and-mouth disease (FMD) and Peste des petits ruminant disease (PPR) are acute and severe infectious diseases of sheep and are listed as animal diseases for compulsory immunization. However, there is no dual vaccine to prevent these two diseases. The Modified Vaccinia virus Ankara strain (MVA) has been widely used in the construction of recombinant live vector vaccine because of its large capacity of foreign gene, wide host range, high safety, and immunogenicity. In this study, MVA-GFP recombinant virus skeleton was used to construct dual live vector vaccines against FMD and PPR. METHODS: The recombinant plasmid pUC57-FMDV P1-2A3CPPRV FH was synthesized and transfected into MVA-GFP infected CEF cells for homologous recombination. RESULTS: The results showed that a recombinant virus without fluorescent labeling was obtained after multiple rounds of plaque screening. The recombinant virus successfully expressed the target proteins, and the empty capsid of FMDV could be observed by transmission electron microscope (TME), and the expression levels of foreign proteins (VP1 and VP3) detected by ELISA were like those detected in FMDV-infected cells. This study laid the foundation for the successful construction of a live vector vaccine against FMD and PPR. KEY POINTS: • A recombinant MVA expressing FMDVP12A3C and PRRV HF proteins • Both the FMDV and PRRV proteins inserted into the virus were expressed • The proteins expressed by the recombinant poxvirus were assembled into VLPs.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Peste de los Pequeños Rumiantes , Vacunas Virales , Ovinos , Animales , Peste de los Pequeños Rumiantes/prevención & control , Anticuerpos Antivirales , Proteínas Virales/genética , Virus de la Fiebre Aftosa/genética , Vacunas Sintéticas/genética , Vacunas Virales/genética
4.
J Clin Microbiol ; 60(4): e0214221, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35254106

RESUMEN

The level of neutralizing antibodies in vaccinated animals is directly related to their level of protection against a virus challenge. The virus neutralization test (VNT) is a "gold standard" method for detecting neutralizing antibodies against foot-and-mouth disease virus (FMDV). However, VNT requires high-containment facilities that can handle live viruses and is not suitable for large-scale serological surveillance. In this study, a bovine broadly neutralizing monoclonal antibody (W145) against FMDV serotype A was successfully produced using fluorescence-based single-B-cell antibody technology. Using biotinylated W145 as a detector antibody and another bovine cross-reactive monoclonal antibody, E32, which was produced previously as a capture antibody, a competitive enzyme-linked immunosorbent assay for the detection of neutralizing antibodies (NAC-ELISA) against FMDV serotype A was developed. The specificity and sensitivity of the assay were evaluated to be 99.04% and 100%, respectively. A statistically significant correlation (r = 0.9334, P < 0.0001) was observed between the NAC-ELISA titers and the VNT titers, suggesting that the NAC-ELISA could detect neutralizing antibodies against FMDV serotype A and could be used to evaluate protective immunity.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Bovinos , Ensayo de Inmunoadsorción Enzimática/métodos , Fiebre Aftosa/diagnóstico , Fiebre Aftosa/prevención & control , Humanos , Serogrupo
5.
Vet Res ; 53(1): 56, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804412

RESUMEN

Foot-and-mouth disease (FMD) remains a very serious barrier to agricultural development and the international trade of animals and animal products. Recently, serotype O has been the most prevalent FMDV serotype in China, and it has evolved into four different lineages: O/SEA/Mya-98, O/ME-SA/PanAsia, O/ME-SA/Ind-2001 and O/Cathay. PanAsia-2, belonging to the O/ME-SA topotype, is prevalent in neighbouring countries and poses the risk of cross-border spread in China. This study aimed to develop a promising vaccine candidate strain that can not only provide the best protection against all serotype O FMDVs circulating in China but also be used as an emergency vaccine for the prevention and control of transboundary incursion of PanAsia-2. Here, two chimeric FMDVs (rHN/TURVP1 and rHN/NXVP1) featuring substitution of VP1 genes of the O/TUR/5/2009 vaccine strain (PanAsia-2) and O/NXYCh/CHA/2018 epidemic strain (Mya98) were constructed and evaluated. The biological properties of the two chimeric FMDVs were similar to those of the wild-type (wt) virus despite slight differences in plaque sizes observed in BHK-21 cells. The structural protein-specific antibody titres induced by the rHN/TURVP1 and wt virus vaccines in pigs and cows were higher than those induced by the rHN/NXVP1 vaccine at 28-56 dpv. The vaccines prepared from the two chimeric viruses and wt virus all induced the production of protective cross-neutralizing antibodies against the viruses of the Mya-98, PanAsia and Ind-2001 lineages in pigs and cattle at 28 dpv; however, only the animals vaccinated with the rHN/TURVP1 vaccine produced a protective immune response to the field isolate of the Cathay lineage at 28 dpv, whereas the animals receiving the wt virus and the rHN/NXVP1 vaccines did not, although the wt virus and O/GXCX/CHA/2018 both belong to the Cathay topotype. This study will provide very useful information to help develop a potential vaccine candidate for the prevention and control of serotype O FMD in China.


Asunto(s)
Enfermedades de los Bovinos , Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Bovinos , Enfermedades de los Bovinos/prevención & control , Comercio , Fiebre Aftosa/epidemiología , Virus de la Fiebre Aftosa/genética , Internacionalidad , Serogrupo , Porcinos
6.
Virol J ; 14(1): 131, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28716095

RESUMEN

BACKGROUND: Goatpox virus (GTPV) and sheeppox virus (SPPV), which belong to the Capripoxvirus (CaPV), are economically important pathogens of small ruminants. Therefore, a sensitive, specific and rapid diagnostic assay for detection of GTPV and SPPV is necessary to accurately and promptly control these diseases. METHODS: Recombinase polymerase amplification (RPA) assays combined with a real-time fluorescent detection (real-time RPA assay) and lateral flow dipstick (RPA LFD assay) were developed targeting the CaPV G-protein-coupled chemokine receptor (GPCR) gene, respectively. RESULTS: The sensitivity of both CaPV real-time RPA assay and CaPV RPA LFD assay were 3 × 102 copies per reaction within 20 min at 38 °C. Both assays were highly specific for CaPV, with no cross-reactions with peste des petits ruminants virus, foot-and-mouth disease virus and Orf virus. The evaluation of the performance of these two assays with clinical sample (n = 107) showed that the CaPV real-time RPA assay and CaPV RPA LFD assay were able to specially detect SPPV or GTPV present in samples of ovine in liver, lung, kidney, spleen, skin and blood. CONCLUSIONS: This study provided a highly time-efficient and simple alternative for rapid detection of GTPV and SPPV.


Asunto(s)
Capripoxvirus/aislamiento & purificación , ADN Viral/análisis , Enfermedades de las Cabras/diagnóstico , Técnicas de Diagnóstico Molecular/métodos , Reacción en Cadena de la Polimerasa/métodos , Infecciones por Poxviridae/veterinaria , Enfermedades de las Ovejas/diagnóstico , Animales , ADN Viral/genética , Enfermedades de las Cabras/virología , Cabras , Infecciones por Poxviridae/diagnóstico , Infecciones por Poxviridae/virología , Sensibilidad y Especificidad , Ovinos , Enfermedades de las Ovejas/virología , Temperatura , Factores de Tiempo , Medicina Veterinaria/métodos
7.
BMC Vet Res ; 13(1): 278, 2017 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-28859636

RESUMEN

BACKGROUND: Clinically, sheeppox and goatpox have the same symptoms and cannot be distinguished serologically. A cheaper and easy method for differential diagnosis is important in control of this disease in endemic region. METHODS: A duplex PCR assay was developed for the specific differential detection of Goatpox virus (GTPV) and Sheeppox virus (SPPV), using two sets of primers based on viral E10R gene and RPO132 gene. RESULTS: Nucleic acid electrophoresis results showed that SPPV-positive samples appear two bands, and GTPV-positive samples only one stripe. There were no cross-reactions with nucleic acids extracted from other pathogens including foot-and-mouth disease virus, Orf virus. The duplex PCR assay developed can specially detect SPPV or GTPV present in samples (n = 135) collected from suspected cases of Capripox. CONCLUSIONS: The duplex PCR assay developed is a specific and sensitive method for the differential diagnosis of GTPV and SPPV infection, with the potential to be standardized as a detection method for Capripox in endemic areas.


Asunto(s)
Capripoxvirus/aislamiento & purificación , Reacción en Cadena de la Polimerasa/veterinaria , Animales , Capripoxvirus/clasificación , Capripoxvirus/genética , Chlorocebus aethiops , Cartilla de ADN , Genes Virales , Enfermedades de las Cabras/virología , Cabras , Reacción en Cadena de la Polimerasa/métodos , Polimorfismo de Longitud del Fragmento de Restricción , Infecciones por Poxviridae/virología , Sensibilidad y Especificidad , Ovinos , Enfermedades de las Ovejas/virología , Especificidad de la Especie , Células Vero
8.
BMC Microbiol ; 14: 10, 2014 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-24438089

RESUMEN

BACKGROUND: Capripox viruses are economically important pathogens in goat and sheep producing areas of the world, with specific focus on goat pox virus (GTPV), sheep pox virus (SPPV) and the Lumpy Skin Disease virus (LSDV). Clinically, sheep pox and goat pox have the same symptoms and cannot be distinguished serologically. This presents a real need for a rapid, inexpensive, and easy to operate and maintain genotyping tool to facilitate accurate disease diagnosis and surveillance for better management of Capripox outbreaks. RESULTS: A LAMP method was developed for the specific differential detection of GTPV and SPPV using three sets of LAMP primers designed on the basis of ITR sequences. Reactions were performed at 62°C for either 45 or 60 min, and specificity confirmed by successful differential detection of several GTPV and SPPV isolates. No cross reactivity with Orf virus, foot-and-mouth disease virus (FMDV), A. marginale Lushi isolate, Mycoplasma mycoides subsp. capri, Chlamydophila psittaci, Theileria ovis, T. luwenshuni, T. uilenbergi or Babesia sp was noted. RFLP-PCR analysis of 135 preserved epidemic materials revealed 48 samples infected with goat pox and 87 infected with sheep pox, with LAMP test results showing a positive detection for all samples. When utilizing GTPV and SPPV genomic DNA, the universal LAMP primers (GSPV) and GTPV LAMP primers displayed a 100% detection rate; while the SPPV LAMP detection rate was 98.8%, consistent with the laboratory tested results. CONCLUSIONS: In summary, the three sets of LAMP primers when combined provide an analytically robust method able to fully distinguish between GTPV and SPPV. The presented LAMP method provides a specific, sensitive and rapid diagnostic tool for the distinction of GTPV and SPPV infections, with the potential to be standardized as a detection method for Capripox viruses in endemic areas.


Asunto(s)
Capripoxvirus/clasificación , Capripoxvirus/aislamiento & purificación , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Infecciones por Poxviridae/veterinaria , Medicina Veterinaria/métodos , Virología/métodos , Animales , Capripoxvirus/genética , Cartilla de ADN/genética , Diagnóstico Diferencial , Cabras , Infecciones por Poxviridae/virología , Sensibilidad y Especificidad , Ovinos , Factores de Tiempo
9.
J Virol Methods ; 314: 114676, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36669654

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious and economically devastating disease of cloven-hoofed animals. Vaccination and surveillance against non-structure protein (NSP) are the most efficacious and cost-effective strategy to control this disease. Therefore, vaccine purity control is vital for successful prevention. Currently, vaccine purity is tested by an in-vivo test that recommended in the World Organization for Animal Health (WOAH), but it is time consuming and costly. Herein, we develop a double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) for quantitative detection of residual NSPs in inactivated FMD virus (FMDV) vaccines. In this assay, the monoclonal antibody 3A24 was selected as capture antibody and biotinylated 3B4B1 (Biotin-3B4B1) as detection antibody. A standard curve was developed using the NSP 3AB concentration versus OD value with the linear range of concentration of 2.5-160 ng/mL. The lowest limit of detection was 2.5 ng/mL. In addition, we determined 2.5 ng/mL of NSP as an acceptable threshold value of FMD vaccine purity using a dose-response experiment in cattle. The DAS-ELISA combined with the threshold value of FMD vaccine purity could provide a quick and simple tool for evaluation the antigenic purity of FMD vaccine during the manufacturing process.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Bovinos , Vacunas de Productos Inactivados , Anticuerpos Antivirales , Fiebre Aftosa/diagnóstico , Fiebre Aftosa/prevención & control , Ensayo de Inmunoadsorción Enzimática/veterinaria
10.
Microbiol Spectr ; 11(3): e0459922, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37036366

RESUMEN

Senecavirus A (SVA) is an emerging viral pathogen related to vesicular disease and neonatal mortality in swine, which results in enormous economic losses to the global swine industry. The clinical signs of SVA are indistinguishable from those of other vesicular diseases, such as foot-and-mouth disease, which is an economically devastating animal disease. Therefore, development of a rapid, sensitive, and specific diagnostic method for the detection of SVA infection is critical for the prevention and control of SVA and would help to rule out other exotic diseases. In this study, two whole-porcine anti-SVA antibodies (1M5 and 1M25) were produced using single B cell antibody technology. 1M5 and 1M25 possessed neutralizing activity against SVA but recognized different conformational epitopes that depended on the intact virion. Using 1M5 as the capture antibody and biotinylated 1M25 as the detection antibody, a reliable and rapid competitive enzyme-linked immunosorbent assay for detecting neutralizing antibodies (NAC-ELISA) against SVA was developed. Receiver-operating characteristic curve analysis showed that the sensitivity and specificity of the assay were 98.11% and 100%, respectively, with a cutoff percent inhibition value of 45%. The NAC-ELISA was specific for detecting SVA-specific antibodies, without cross-reactivity to other virus-infected sera. The results of the NAC-ELISA showed a strong agreement with the results of the virus neutralization test. Therefore, the NAC-ELISA developed in this study represents a sensitive, specific, and reliable tool for the detection of SVA-specific antibodies, which is applicable for serodiagnosis and serological surveillance of SVA and is conducive to the prevention and control of SVA. IMPORTANCE Senecavirus A (SVA) is an emerging picornavirus related to vesicular disease and neonatal mortality in swine, which results in enormous economic losses worldwide. Additionally, the clinical characteristics of the disease are indistinguishable from those of other vesicular diseases, such as foot-and-mouth disease. Therefore, developing tools for rapidly and accurately detecting SVA infection is critical and urgent. In this study, two porcine-derived monoclonal antibodies against SVA were generated, and a competitive ELISA for the detection of neutralizing antibodies (NAC-ELISA) against SVA was successfully developed using these two porcine monoclonal antibodies. The NAC-ELISA was SVA specific with no cross-reactivity to other related pathogens and had high sensitivity, specificity, and reproducibility for detecting SVA-specific antibody. Therefore, the NAC-ELISA developed in this study may be of great value as a simple and reliable tool for serodiagnosis or surveillance of SVA and may facilitate the prevention and control of SVA.


Asunto(s)
Fiebre Aftosa , Enfermedades de los Porcinos , Animales , Porcinos , Anticuerpos Neutralizantes , Anticuerpos Monoclonales , Reproducibilidad de los Resultados , Anticuerpos Antivirales , Ensayo de Inmunoadsorción Enzimática/métodos , Enfermedades de los Porcinos/epidemiología
11.
Autophagy ; 18(4): 816-828, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34338134

RESUMEN

While the functions of STING1 (stimulator of interferon response cGAMP interactor 1) during DNA virus infection had been well documented, the roles STING1 plays during RNA viruses infection is obscure. Infection with foot-and-mouth disease virus (FMDV), a well-known picornavirus, induces endoplasmic reticulum (ER) stress response and autophagy. Here, we found that the FMDV-induced integrated stress response originates from the cellular pattern recognition receptor DDX58/RIG-I (DExD/H-box helicase 58). DDX58 transmits signals to the ER-anchored adaptor protein STING1, which specifically activates the EIF2AK3/PERK (eukaryotic translation initiation factor 2A)-dependent integrated stress response and finally leads to reticulophagy and degradation of STING1 itself. Knockdown/knockout of STING1 or EIF2AK3 suppresses FMDV genome replication and viral protein expression. Reticulophagy induction by STING1 does not require its translocation to the Golgi or IFN response activation. However, STING1 polymerization is necessary for the FMDV-induced integrated stress response and reticulophagy. Our work illustrated the signaling cascades that mediate the cellular stress response to FMDV infection and indicated that induction of autophagy in response to both DNA and RNA virus infection may be an evolutionarily conserved function of STING1. Abbreviations: ATF6: activating transcription factor 6; CGAS: cyclic GMP-AMP synthase; DDX58/RIG-I: DExD/H-box helicase 58; EIF2A/eIF2α: eukaryotic translation initiation factor 2A; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 2; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum to nucleus signaling 1; FMD: foot-and-mouth disease; FMDV: foot-and-mouth disease virus; IFIH1/MDA5: interferon induced with helicase C domain 1; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MAVS: mitochondrial antiviral signaling protein; MOI: multiplicity of infection; RETREG1/FAM134B: reticulophagy regulator 1; STING1: stimulator of interferon response cGAMP interactor 1; TCID50: 50% tissue culture infectious dose; XBP1: X-box binding protein 1.


Asunto(s)
Autofagia , Virus ARN , Animales , Autofagia/genética , Estrés del Retículo Endoplásmico , Interferones , ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA