Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 17(16)2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39203277

RESUMEN

The fracture mechanism and macro-properties of SVSAC were studied using a novel test system combined with numerical simulations, which included three-point bending beam tests, the digital image correlation (DIC) technique, scanning electron microscopy (SEM), and ABAQUS analyses. In total, 9 groups and 36 specimens were fabricated by considering two critical parameters: initial notch-to-depth ratios (a0/h) and concrete mix components (seawater and volcanic scoria coarse aggregate (VSCA)). Changes in fracture parameters, such as the load-crack mouth opening displacement curve (P-CMOD), load-crack tip opening displacement curve (P-CTOD), and fracture energy (Gf), were obtained. The typical double-K fracture parameters (i.e., initial fracture toughness (KICini) and unstable fracture toughness (KICun)) and tension-softening (σ-CTOD) curve were analyzed. The test results showed that the initial cracking load (Pini), Gf, and characteristic length (Lch) of the SVSAC increased with decreasing a0/h. Compared with the ordinary concrete (OC) specimen, the P-CMOD and P-CTOD curves of the specimen changed after using seawater and VSCA. The evolution of the crack propagation length was obtained through the DIC technique, indicating cracks appeared earlier and the fracture properties of specimen decreased after using VSCA. Generally, the KICun and KICini of SVSAC were 36.17% and 8.55% lower than those of the OC specimen, respectively, whereas the effects of a0/h were negligible. The reductions in Pini, Gf, and Lch of the specimen using VSCA were 10.94%, 32.66%, and 60.39%, respectively; however, seawater efficiently decreased the negative effect of VSCA on the fracture before the cracking width approached 0.1 mm. Furthermore, the effects of specimen characteristics on the fracture mechanism were also studied through numerical simulations, indicating the size of the beam changed the fracture toughness. Finally, theoretical models of the double-K fracture toughness and the σ-CTOD relations were proposed, which could prompt their application in marine structures.

2.
Chemosphere ; 325: 138312, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36907487

RESUMEN

The extensive use of plastics leads to the release and diffusion of microplastics. Household plastic products occupy a large part and are closely related to daily life. Due to the small size and complex composition of microplastics, it is challenging to identify and quantify microplastics. Therefore,a multi-model machine learning approach was developed for classification of household microplastics based on Raman spectroscopy. In this study, Raman spectroscopy and machine learning algorithm are combined to realize the accurate identification of seven standard microplastic samples, real microplastics samples and real microplastic samples post-exposure to environmental stresses. Four single-model machine learning methods were used in this study, including Support vector machine (SVM), K-nearest neighbor (KNN), Linear discriminant analysis (LDA), and Multi-layer perceptron (MLP) model. The principal components analysis (PCA) was utilized before SVM, KNN and LDA. The classification effect of four models on standard plastic samples is over 88%, and reliefF algorithm was used to distinguish HDPE and LDPE samples. A multi-model is proposed based on four single models including PCA-LDA, PCA-KNN and MLP. The recognition accuracy of multi-model for standard microplastic samples, real microplastic samples and microplastic samples post-exposure to environmental stresses is over 98%. Our study demonstrates that the multi-model coupled with Raman spectroscopy is a valuable tool for microplastic classification.


Asunto(s)
Microplásticos , Plásticos , Plásticos/análisis , Espectrometría Raman/métodos , Análisis Discriminante , Algoritmos
3.
Stem Cells Int ; 2018: 2398521, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29765407

RESUMEN

Spinal cord injury (SCI) is one of serious traumatic diseases of the central nervous system and has no effective treatment because of its complicated pathophysiology. Tissue engineering strategy which contains scaffolds, cells, and growth factors can provide a promising treatment for SCI. Hydrogel that has 3D network structure and biomimetic microenvironment can support cellular growth and embed biological macromolecules for sustaining release. Dental pulp stem cells (DPSCs), derived from cranial neural crest, possess mesenchymal stem cell (MSC) characteristics and have an ability to provide neuroprotective and neurotrophic properties for SCI treatment. Basic fibroblast growth factor (bFGF) is able to promote cell survival and proliferation and also has beneficial effect on neural regeneration and functional recovery after SCI. Herein, a thermosensitive heparin-poloxamer (HP) hydrogel containing DPSCs and bFGF was prepared, and the effects of HP-bFGF-DPSCs on neuron restoration after SCI were evaluated by functional recovery tests, western blotting, magnetic resonance imaging (MRI), histology evaluation, and immunohistochemistry. The results suggested that transplanted HP hydrogel containing DPSCs and bFGF had a significant impact on spinal cord repair and regeneration and may provide a promising strategy for neuron repair, functional recovery, and tissue regeneration after SCI.

4.
J Biomater Sci Polym Ed ; 26(15): 1067-83, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26230052

RESUMEN

A negatively charged copolymer poly (MPC-co-AMPS) of 2-methacryloyloxyethyl phosphorylcholine (MPC) and 2-acrylamide-2-methyl propane sulfonic acid (AMPS) was designed and synthesized. Chitosan nanoparticles with cell outer membrane mimetic structure were prepared by electrostatic interaction between the sulfonic acid groups of poly (MPC-co-AMPS) and the protonated amino groups of chitosan. Effects of factors on influencing the particle size, distribution, and stability were investigated. The experimental results showed that cell membrane mimetic chitosan nanoparticles with controllable and homogeneous size ranged from 100 to 300 nm were prepared at the concentration of 0.1-2.0 mg/mL and the charge ratio of 0.5-1.1. Chitosan nanoparticles prepared can exist stably for more than 45 days when placed at 4 °C and pH < 7.5. The cytotoxicity of the chitosan nanoparticles reduced significantly after surface modification with cell membrane mimetic structure, meeting the basic requirements of biomedical materials. The results suggest cell membrane mimetic chitosan nanoparticles prepared with polyanion and polycation obtain good biological compatibility and immune stealth ability, which has important academic significance and great application prospects.


Asunto(s)
Materiales Biomiméticos , Quitosano , Nanopartículas , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/química , Materiales Biomiméticos/toxicidad , Membrana Celular , Supervivencia Celular , Quitosano/síntesis química , Quitosano/química , Quitosano/toxicidad , Concentración de Iones de Hidrógeno , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Estructura Molecular , Nanopartículas/química , Nanopartículas/toxicidad , Tamaño de la Partícula , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Ácidos Polimetacrílicos/química , Espectroscopía de Protones por Resonancia Magnética , Hidróxido de Sodio/química , Soluciones , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA