Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pestic Biochem Physiol ; 201: 105904, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685226

RESUMEN

Arsenic (As) and polystyrene nanoplastics (PSNPs) co-exposure induced biotoxicity and ecological risks have attracted wide attention. However, the combined effects of As and PSNPs on the kidney and their underlying mechanisms of toxicities remain to be explored. Here, we investigated the effects of As and PSNPs co-exposure on structure and function in mice kidney, and further explored the possible mechanisms. In this study, we identified that co-exposure to As and PSNPs exhibited conspicuous renal structural damage and pathological changes, accompanied by renal tissue fibrosis (increased protein expression of Collagen I and α-SMA and deposition of collagen fibers), whereas alone exposure to As or PSNPs does not exhibit nephrotoxicity. Subsequently, our results further showed that combined action of As and PSNPs induced mitochondrial oxidative damage and impaired mitochondrial dynamic balance. Furthermore, co-treatment with As and PSNPs activated NCOA4-mediated ferritinophagy and ferroptosis in mice kidney and TCMK-1 cells, which was confirmed by the changes in the expression of ferritinophagy and ferroptosis related indicators (NCOA4, LC3, ATG5, ATG7, FTH1, FTL, GPX4, SLC7A11, FSP1, ACSL4 and PTGS2). Meaningfully, pretreatment with the mtROS-targeted scavenger Mito-TEMPO significantly attenuated As and PSNPs co-exposure induced mitochondrial damage, ferritinophagy and ferroptosis. In conclusion, these findings demonstrated that mtROS-dependent ferritinophagy and ferroptosis are important factors in As and PSNPs co-exposure induced kidney injury and fibrosis. This study provides a new insight into the study of combined toxicity of nanoplastics and heavy metal pollutants.


Asunto(s)
Arsénico , Ferroptosis , Riñón , Mitocondrias , Poliestirenos , Animales , Ferroptosis/efectos de los fármacos , Poliestirenos/toxicidad , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Arsénico/toxicidad , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Masculino , Homeostasis/efectos de los fármacos , Ferritinas/metabolismo , Nanopartículas/toxicidad , Ratones Endogámicos C57BL , Especies Reactivas de Oxígeno/metabolismo
2.
Environ Toxicol ; 39(1): 264-276, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37705229

RESUMEN

Co-existing of polystyrene-nano plastics (PSNPs) and arsenic (As) in the environment caused a horrendous risk to human health. However, the potential mechanism of PSNPs and As combination induced testicular toxicity in mammals has not been elucidated. Therefore, we first explore the testicular toxicity and the potential mechanism in male Kunming mice exposed to As or/and PSNPs. Results revealed that compared to the As or PSNPs group, the combined group showed more significant testicular toxicity. Specifically, As and PSNPs combination induced irregular spermatozoa array and blood-testis barrier disruption. Simultaneously, As and PSNPs co-exposure also exacerbated oxidative stress, including increasing the MDA content, and down-regulating expression of Nrf-2, HO-1, SOD-1, and Trx. PSNPs and As combination also triggered testicular apoptosis, containing changes in apoptotic factors (P53, Bax, Bcl-2, Cytc, Caspase-8, Caspase-9, and Caspase-3). Furthermore, co-exposed to As and PSNPs aggravated inflammatory damage characterized by targeted phosphorylation of NF-κB and degradation of I-κB. In summary, our results strongly confirmed As + PSNPs co-exposure induced the synergistic toxicity of testis through excessive oxidative stress, apoptosis, and inflammation, which could offer a new sight into the mechanism of environmental pollutants co-exposure induced male reproductive toxicity.


Asunto(s)
Arsénico , Testículo , Ratones , Humanos , Masculino , Animales , Testículo/metabolismo , Poliestirenos/toxicidad , Arsénico/toxicidad , Arsénico/metabolismo , Microplásticos , Plásticos/metabolismo , Estrés Oxidativo , Inflamación/inducido químicamente , Inflamación/metabolismo , Apoptosis , Mamíferos/metabolismo
3.
Chemosphere ; 300: 134566, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35413363

RESUMEN

The ecological risks caused by the coexistence of pollutants such as arsenic (As) and polystyrene-nanoplastics (PSNPs) in the environment have become a non-negligible problem. However, the effects of As and PSNPs co-exposure on mammals and the underlying toxicity mechanisms have remained unclear. Therefore, the present study established mouse models of As and/or PSNPS exposure to systematically analyze the underlying role of autophagy, apoptosis and pyroptosis in hepatotoxicity induced by co-exposure of As and PSNPs. Our findings demonstrated for the first time that mice co-exposure to As and PSNPs displayed significant pathological changes in the liver, while exposure to As or PSNPs alone did not produce significant toxic effects. More importantly, As and PSNPs co-exposure activated excessive autophagy through altered expression levels of PI3K, mTOR, Beclin-1, ATG5, LC3 and P62. Meanwhile, co-treatment with As and PSNPs induced apoptosis in the liver, which was confirmed by ultrastructure observation and changes in the expression of apoptosis indicators (P53, Bax, Bcl-2, Caspase-3, Caspase-9, Cleaved-Caspase-3 and Cytc). Additionally, co-exposure of As and PSNPs induced pyroptosis in the liver through NLRP3/Caspase-1 pathway via targeting NLRP3, ASC, Pro-Caspase-1, GSDMD and Cleaved-Caspase-1 expressions. Overall, our findings provide deeper insight into the roles of apoptosis, pyroptosis and excessive autophagy in the aggravation of liver injury, which could contribute to a better understanding of the interactions between As and PSNPS exposure and the molecular mechanisms of hepatotoxicity.


Asunto(s)
Arsénico , Enfermedad Hepática Inducida por Sustancias y Drogas , Animales , Apoptosis , Arsénico/toxicidad , Autofagia , Caspasa 3 , Mamíferos/metabolismo , Ratones , Microplásticos , Proteína con Dominio Pirina 3 de la Familia NLR , Poliestirenos/metabolismo , Piroptosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA