Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Oral Health ; 23(1): 454, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415178

RESUMEN

BACKGROUND: Odontogenic keratocyst (OKC) is a relatively common odontogenic lesion characterized by local invasion in the maxillary and mandibular bones. In the pathological tissue slices of OKC, immune cell infiltrations are frequently observed. However, the immune cell profile and the molecular mechanism for immune cell infiltration of OKC are still unclear. We aimed to explore the immune cell profile of OKC and to explore the potential pathogenesis for immune cell infiltration in OKC. METHODS: The microarray dataset GSE38494 including OKC and oral mucosa (OM) samples were obtained from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) in OKC were analyzed by R software. The hub genes of OKC were performed by protein-protein interaction (PPI) network. The differential immune cell infiltration and the potential relationship between immune cell infiltration and the hub genes were performed by single-sample gene set enrichment analysis (ssGSEA). The expression of COL1A1 and COL1A3 were confirmed by immunofluorescence and immunohistochemistry in 17 OKC and 8 OM samples. RESULTS: We detected a total of 402 differentially expressed genes (DEGs), of which 247 were upregulated and 155 were downregulated. DEGs were mainly involved in collagen-containing extracellular matrix pathways, external encapsulating structure organization, and extracellular structure organization. We identified ten hub genes, namely FN1, COL1A1, COL3A1, COL1A2, BGN, POSTN, SPARC, FBN1, COL5A1, and COL5A2. A significant difference was observed in the abundances of eight types of infiltrating immune cells between the OM and OKC groups. Both COL1A1 and COL3A1 exhibited a significant positive correlation with natural killer T cells and memory B cells. Simultaneously, they demonstrated a significant negative correlation with CD56dim natural killer cells, neutrophils, immature dendritic cells, and activated dendritic cells. Immunohistochemistry analysis showed that COL1A1 (P = 0.0131) and COL1A3 (P < 0.001) were significantly elevated in OKC compared with OM. CONCLUSIONS: Our findings provide insights into the pathogenesis of OKC and illuminate the immune microenvironment within these lesions. The key genes, including COL1A1 and COL1A3, may significantly impact the biological processes associated with OKC.


Asunto(s)
Quistes Odontogénicos , Tumores Odontogénicos , Humanos , Mucosa Bucal , Quistes Odontogénicos/genética , Biología Computacional , Microambiente Tumoral
3.
J Stomatol Oral Maxillofac Surg ; 125(3S): 101846, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38556167

RESUMEN

Oral and maxillofacial tumors pose a significant clinical challenge due to their tendency to recur, despite advancements in surgical removal techniques. The jaw's intricate structure further complicates treatments and affects patient quality of life. Consequently, emphasis has shifted towards pharmacological interventions, to potentially reduce invasive surgical procedures. One promising approach targets BRAF mutations, specifically the common V600E mutation. BRAF, a critical protein kinase, regulates cell growth and differentiation via the RAS-RAF-MEK-ERK-MAP kinase pathway. A specific nucleotide change at position 1799, swapping Thymine (T) for Adenine (A), results in the V600E mutation, causing unchecked cell growth. This mutation is common in certain oral and maxillofacial tumors like ameloblastoma. A recent neoadjuvant therapy targeting BRAF, involving the use of dabrafenib and trametinib, has showcased a promising, safe, and effective strategy for organ preservation in the treatment of mandibular ameloblastoma. This convergence of molecular insights and targeted therapies holds the key to managing BRAF-mutated oral and maxillofacial tumors effectively, promising improved patient outcomes.


Asunto(s)
Ameloblastoma , Mutación , Proteínas Proto-Oncogénicas B-raf , Humanos , Proteínas Proto-Oncogénicas B-raf/genética , Ameloblastoma/genética , Ameloblastoma/terapia , Ameloblastoma/diagnóstico , Imidazoles/uso terapéutico , Oximas/uso terapéutico , Piridonas/uso terapéutico , Piridonas/administración & dosificación , Pirimidinonas/uso terapéutico , Antineoplásicos/uso terapéutico , Neoplasias de la Boca/terapia , Neoplasias de la Boca/genética , Neoplasias de la Boca/patología , Terapia Neoadyuvante/métodos , Terapia Molecular Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA