Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Sci Adv ; 10(1): eadj8567, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38181088

RESUMEN

Future exploitation of marine resources in a sustainable and eco-friendly way requires autonomous underwater robotics with human-like perception. However, the development of such intelligent robots is now impeded by the lack of adequate underwater haptic sensing technology. Inspired by the populational coding strategy of the human tactile system, we harness the giant magnetoelasticity in soft polymer systems as an innovative platform technology to construct a multimodal underwater robotic skin for marine object recognition with intrinsic waterproofness and a simple configuration. The bioinspired magnetoelastic artificial skin enables multiplexed tactile modality in each single taxel and obtains an impressive classification rate of 95% in identifying seven types of marine creatures and marine litter. By introducing another degree of freedom in underwater haptic sensing, this work represents a milestone toward sustainable marine resource exploitation.


Asunto(s)
Robótica , Piel Artificial , Humanos , Tecnología Háptica , Inteligencia , Polímeros
2.
Adv Mater ; 35(24): e2207916, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37119438

RESUMEN

Self-sensing actuators are critical to artificial robots with biomimetic proprio-/exteroception properties of biological neuromuscular systems. Existing add-on approaches, which physically blend heterogeneous sensor/actuator components, fall short of yielding satisfactory solutions, considering their suboptimal interfaces, poor adhesion, and electronic/mechanical property mismatches. Here, a single homogeneous material platform is reported by creating a silver-polymer framework (SPF), thus realizing the seamless sensing-actuation unification. The SPF-enabled elastomer is highly stretchable (1200%), conductive (0.076 S m-1 ), and strong (0.76 MPa in-strength), where the stretchable polymer matrix synthesis and in situ silver nanoparticles reduction are accomplished simultaneously. Benefiting from the multimodal sensing capability from its architecture itself (mechanical and thermal cues), self-sensing actuation (proprio-deformations and external stimuli perceptions) is achieved for the SPF-based pneumatic actuator, alongside an excellent load-lifting attribute (up to 3700 times its own weight), substantiating its advantage of the unified sensing-actuation feature in a single homogenous material. In view of its human somatosensitive muscular systems imitative functionality, the reported SPF bodes well for use with next-generation functional tissues, including artificial skins, human-machine interfaces, self-sensing robots, and otherwise dynamic materials.


Asunto(s)
Complejos de Coordinación , Nanopartículas del Metal , Humanos , Polímeros , Plata , Elastómeros
3.
ACS Nano ; 16(4): 6013-6022, 2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35417654

RESUMEN

Interfacing with the human body, wearable and implantable bioelectronics are a compelling platform technology for healthcare monitoring and medical therapeutics. However, clinical adoption of these devices is largely shadowed by their weakness in humidity resistance, stretchability, durability, and biocompatibility. In this work, we report a self-powered waterproof biomechanical sensor with stretchability up to 440% using the giant magnetoelastic effect in a soft polymer system. By manipulating the magnetic dipole alignment, the sensor achieved a particularly broad sensing range from 3.5 Pa to 2000 kPa, with a response time of ∼3 ms. To validate the excellent performance of the magnetoelastic sensor in biomonitoring, both ex vivo porcine heart testing and in vivo rat model testing were performed for cardiovascular monitoring and heart disease diagnosis. With the obtained sensing data, we have successfully detected ventricular arrhythmia and ventricular fibrillation in the Sprague-Dawley rat model. Holding a collection of compelling features, including minimal hysteresis, ultrawide sensing range, waterproofness, and biocompatibility, the magnetoelastic sensor represents a unique platform technology for self-powered biomonitoring in both wearable and implantable manners.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Porcinos , Ratas , Animales , Monitoreo Biológico , Ratas Sprague-Dawley , Monitoreo Fisiológico , Polímeros
4.
Small Methods ; 6(2): e2101051, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35174985

RESUMEN

Electrode microfabrication technologies such as lithography and deposition have been widely applied in wearable electronics to boost interfacial coupling efficiency and device performance. However, a majority of these approaches are restricted by expensive and complicated processing techniques, as well as waste discharge. Here, helium plasma irradiation is employed to yield a molybdenum microstructured electrode, which is constructed into a flexible piezoresistive pressure sensor based on a Ti3 C2 Tx nanosheet-immersed polyurethane sponge. This electrode engineering strategy enables the smooth transition between sponge deformation and MXene interlamellar displacement, giving rise to high sensitivity (1.52 kPa-1 ) and good linearity (r2  = 0.9985) in a wide sensing range (0-100 kPa) with a response time of 226 ms for pressure detection. In addition, both the experimental characterization and finite element simulation confirm that the hierarchical structures modulated by pore size, plasma bias, and MXene concentration play a crucial role in improving the sensing performance. Furthermore, the as-developed flexible pressure sensor is demonstrated to measure human radial pulse, detect finger tapping, foot stomping, and perform object identification, revealing great feasibility in wearable biomonitoring and health assessment.


Asunto(s)
Diseño de Equipo/métodos , Determinación de la Frecuencia Cardíaca/instrumentación , Dispositivos Electrónicos Vestibles , Análisis de Elementos Finitos , Humanos , Microtecnología , Poliuretanos/química , Titanio/química , Tacto
5.
ACS Appl Mater Interfaces ; 14(5): 7301-7310, 2022 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-35076218

RESUMEN

The high moisture level of exhaled gases unavoidably limits the sensitivity of breath analysis via wearable bioelectronics. Inspired by pulmonary lobe expansion/contraction observed during respiration, a respiration-driven triboelectric sensor (RTS) was devised for simultaneous respiratory biomechanical monitoring and exhaled acetone concentration analysis. A tin oxide-doped polyethyleneimine membrane was devised to play a dual role as both a triboelectric layer and an acetone sensing material. The prepared RTS exhibited excellent ability in measuring respiratory flow rate (2-8 L/min) and breath frequency (0.33-0.8 Hz). Furthermore, the RTS presented good performance in biochemical acetone sensing (2-10 ppm range at high moisture levels), which was validated via finite element analysis. This work has led to the development of a novel real-time active respiratory monitoring system and strengthened triboelectric-chemisorption coupling sensing mechanism.


Asunto(s)
Acetona/análisis , Pruebas Respiratorias/métodos , Frecuencia Respiratoria/fisiología , Pruebas Respiratorias/instrumentación , Electrónica , Humanos , Nanoestructuras/química , Polietileneimina/química , Reproducibilidad de los Resultados , Compuestos de Estaño/química , Dispositivos Electrónicos Vestibles
6.
Nat Commun ; 13(1): 4867, 2022 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-35982033

RESUMEN

Polymer-ceramic piezoelectric composites, combining high piezoelectricity and mechanical flexibility, have attracted increasing interest in both academia and industry. However, their piezoelectric activity is largely limited by intrinsically low crystallinity and weak spontaneous polarization. Here, we propose a Ti3C2Tx MXene anchoring method to manipulate the intermolecular interactions within the all-trans conformation of a polymer matrix. Employing phase-field simulation and molecular dynamics calculations, we show that OH surface terminations on the Ti3C2Tx nanosheets offer hydrogen bonding with the fluoropolymer matrix, leading to dipole alignment and enhanced net spontaneous polarization of the polymer-ceramic composites. We then translated this interfacial bonding strategy into electrospinning to boost the piezoelectric response of samarium doped Pb (Mg1/3Nb2/3)O3-PbTiO3/polyvinylidene fluoride composite nanofibers by 160% via Ti3C2Tx nanosheets inclusion. With excellent piezoelectric and mechanical attributes, the as-electrospun piezoelectric nanofibers can be easily integrated into the conventional shoe insoles to form a foot sensor network for all-around gait patterns monitoring, walking habits identification and Metatarsalgi prognosis. This work utilizes the interfacial coupling mechanism of intermolecular anchoring as a strategy to develop high-performance piezoelectric composites for wearable electronics.


Asunto(s)
Nanofibras , Polímeros
7.
ACS Nano ; 15(12): 20582-20589, 2021 12 28.
Artículo en Inglés | MEDLINE | ID: mdl-34817978

RESUMEN

In this study, we present the observation of the giant magnetoelastic effect that occurs in soft elastomer systems without the need of external magnetic fields and possesses a magnetomechanical coupling factor that is four times larger than that of traditional rigid metal-based ferromagnetic materials. To investigate the fundamental scientific principles at play, we built a linear model by using COMSOL Multiphysics, which was consistent with the experimental observations. Next, by combining the giant magnetoelastic effect with electromagnetic induction, we developed a magnetoelastic generator (MEG) for biomechanical energy conversion. The wearable MEG demonstrates an ultrahigh output current of 97.17 mA, a low internal impedance of around ∼40 Ω, and an intrinsic waterproof property. We further leveraged the wearable MEG as an ultrahigh current power source to drive a Joule-heating textile for personalized thermoregulation, which increased the temperature of the fiber-shaped resistor by 0.2 °C. The development of the wearable MEG will act as an alternative and compelling approach for on-body electricity generation and arouse a wide range of possibilities in the renewable energy community.


Asunto(s)
Elastómeros , Dispositivos Electrónicos Vestibles , Suministros de Energía Eléctrica , Electricidad , Textiles
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA